中学数学课程标准与教材研究讲稿第一稿前三章.pdf
《中学数学课程标准与教材研究讲稿第一稿前三章.pdf》由会员分享,可在线阅读,更多相关《中学数学课程标准与教材研究讲稿第一稿前三章.pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1 第一讲 义务教育数学课程标准(2011 版)解读 【教学目标】1.了解义务教育数学课程改革的背景、进展,认识数学课程的理念、设计思路以及课程目标和内容标准。2.结合教材(苏教),理解四部分课程内容在三个学段的开设情况。3.领会义务教育阶段学生数学素养的几个方面的培养情况。【教学重难点】重点:课程标准的变化、课程理念解读 难点:对新增加的核心概念的理解【教学方法】讲授法、讨论法、合作教学【教学内容】引言由“课程标准”走进“后课程标准”(标准(2011 年)全日制义务教育数学课程标准(实验稿)(以下简称标准(实验稿)于 2001 年开始在实验区实施,2005 年在全国推广。经过几年的实施,取
2、得了明显成效,也发现了一些问题。教育部于 2005 年 5 月成立“全日制义务教育数学课程标准修订组”,开始标准的修订工作。数学课程标准修订是根据义务教育法的有关规定,遵循基础教育课程改革纲要确定的基础教育课程改革的基本理念,总结新一轮课程改革实施 10 年来的经验,使数学课程更加完善,适应社会发展与教育改革的需要。力求标准更加完善:使标准表述更加准确、规范、明了、全面;使标准结构更加合理、思路更加清晰;进一步增加标准的可操作性,更适合教材编写、教师教学和学习评价。同时在修改期间公布的国家中长期教育改革和发展规划纲要(2010-2020)对标准的修订工作起了重要的指导作用。2007 年底完成了
3、修订的主要工作,形成全日制义务教育数学课程标准(修订稿)(以下简称标准(修订稿)。之后,按教育部统一部署,对初稿广泛征求意见,并进行了必要的框架和文字修改,于 2010年完成修订稿,2011 年通过审查正式公布。义务教育数学课程标准(2011 年版)(以下简称标准(2011)根据教育部文件已正式印发,并将于 2012 年秋季开始执行其对课标(实验稿)作了哪些修订,下文先从整体上粗略的予以梳理,具体修订内容背后蕴含的意义还需要更加深入的研究。2 1.1 课程性质、课程理念、设计思路 标准(2011)包括如下几个部分:第一部分 前言 基本性质、基本理念、设计思路 第二部分 课程目标 总体目标、学段
4、目标 第三部分 课程内容(按第一、二、三学段分述)第四部分 实施建议 教学建议、评价建议、教材编写建议、课程资源开发与利用建议 附录 1 有关行为动词的分类 附录 2 课程内容及实施建议中的实例 说明:两次标准整体情况的对比:首先,“前言”内容做了较大的调整。在前言重点阐述了标准的指导思想、意义与功能课程性质、课程基本理念、课程设计思路。其次,课程目标中的关键术语的解释和所有比较完整的实例统一放在附录中,案例进行统一编号,便于查找和使用。最后,实施建议(教学建议、评价建议、教材编写建议、课程资源开发与利用建议)由原来按学段表述,改为三个学段整体表述,避免不必要的重复,减少了标准正文的篇幅。一、
5、前言 1.“数学”的定义 课标(2011)明确给出了“数学”的定义:数学是研究数量关系和空间形式的科学 课标(实验稿)把“数学”定义为“是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程”,将数学作为人类“数学化”组织现实世界的活动系列,定义有些泛化 2.数 学 观 课标(实验稿)在“基本理念”中论述其数学观:“数学是人们生活、劳动和学习必不可少的工具.,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法.;数学在提高人的推理能力、抽象能力和创造力方面有着独特的作用;数学是人类的一种文 化.”阐明了数学的工具观、模型观、语言观、方
6、法论观、思维场观和文化观 课标(2011)将对数学的理解前提至“前言”第一节,“数学更加广泛的应用于社会生产和日常生活的各个方面.数学作为对于客观现象抽象概括而成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学和社会科学中发挥着越来越大的作用.数学是人类文化的重要组成部分”课标(2011)论述不及课标(实验稿)全面,但强调了“数学与人文”的融合 课标(实验稿)强调学生对“数学化”过程的经历,即“经历将实际问题抽象成数学模型并进行解释与应用的过程”课标(2011)“发挥数学在培养人的思维能力和创新能力方面的不可替代的作用”1则奠定了课标修改的基调关注创新、关注思维【说明】树立正确
7、的数学教学观:教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。3 教学中最需要考虑的是什么?数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。二、课程性质 义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生
8、未来生活、工作和学习奠定重要的基础。三、基本理念及其变化 课标(2011)理念要点:要处理好四个关系:过程和结果的关系;学生自主学习和教师讲授的关系;合情推理和演绎推理的关系;生活情境和知识系统性的关系。有效的教学活动是什么?学生学与教师教的统一。数学课程基本理念(两句话):人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。数学教学活动的本质要求培养学生的数学素养,师生共同发展。培养良好的数学学习习惯 注重启发式 正确看待教师的主导作用 处理好评价中的关系 注意信息技术与课程内容的整合 具体而言:1 数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,
9、使得:2课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。3教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维
10、;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。4 4学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改
11、进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。5信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。【变化情况】在结构
12、上由原来的 6 条改为 5 条。课标(实验稿)“基本理念”的结构为:课程性质、数学观、数学学习、数学教学、评价、信息技术 课标(2011)在“基本理念”中则新增了“课程内容”,并将实验稿中“数学学习、数学教学”合并为“教学活动”。理念整体上 先:数学课程数学数学学习数学教学评价信息技术 后:数学课程课程内容教学活动学习评价信息技术 数学课程 先:“使数学教育面向全体学生,实现:人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”。后:“数学课程应面向全体学生,适应学生个性发展需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。课程内容 先:学生的数学学
13、习内容应当是现实的、有意义的、富有挑战性的,后:课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果,直观与抽象的关系,直接经验与间接经验的关系。(要充分利用现实背景材料,发展学生的数学素养)教学活动 A、关于教学方式 先:动手实践、自主探索与合作交流是学生学习数学的重要方式。后:除接受学习外,动手实践、自主探索与合作交流也是学生学习数学的重要方式。(肯定了接受学习的作用)B、关于学习途径 先:主动地进行观察、实验、猜测、验证、推理与交流等数学活动。后:学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。C、关于教师的主导作用 先
14、:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。5 后:注重启发式和因材施教,处理好讲授与学生自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生(发挥教师的主导作用并不排斥教师讲授知识)【说明】如此修订的原因:教学实践中,教师对课标(实验稿)“活动、探究”理念的错误理解导致了形式化的倾向,如情境创设绚丽多彩、虚假造作、缺少问题、去数学化,探究活动方向模糊、时时探究、只重过程、缺少思维中国传统教学方式中,精讲多练、变式练习等仍有其合理之处,讲授
15、静听式的间接经验学习同样可以是“意义学习”。学习评价 先:要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,后:要关注学生学习的结果,也要关注他们学习的过程;要关注学生数学学习的水平,也要关注他们在数学活动中所表现出来的情感与态度,(两者同等重要)信息技术 先:应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,后:要注意信息技术与课程内容的整合,注重实效。改进教与学的方式,(既
16、要开发运用,又要考虑教学内容的需要,以及培养目标的实现)三、课程设计思路 义务教育阶段数学课程的设计,充分考虑本阶段学生数学学习的特点,符合学生的认知规律和心理特征,有利于激发学生的学习兴趣,引发数学思考;充分考虑数学本身的特点,体现数学的实质;在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。按以上思路具体设计如下。1.课程内容的分类名称有所修改 先:“数与代数”,“空间与图形”,“统计与概率”,“实践与综合应用”后:“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”。2.确立了义务教育阶段数学教
17、育的核心词 先:数感、符号感、空间观念、统计观念、应用意识、推理能力。后:数感、符号意识、运算能力、空间观念、几何直观、推理能力(合情推理、演绎推理)、模型思想以及应用意识和创新意识。3.学习内容及要求进一步分类细化 如:在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力,初步形成模型思想。(A 强调“运算能力”;B 提出“推理能力”新要求;C 明确提出“模型思想”)6 如:在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。(“几何直观”是新增的要求)如:在“数据分析”的教学中,帮助学生逐渐建立起数据分析观念,了解随机现象。(“随机现
18、象”是新增要求)数学课程标准核心概念解读之“几何直观”【教学目标】1.使学生理解“几何直观”定义及内涵;2.通过具体的实例感受几何直观在中小学教学中的地位和作用;3.初步形成培养学生几何直观能力的策略,为以后的教学工作奠定基础。【教学重难点】几何直观的内涵;如何培养学生的几何直观能力【教学方法及技术】讲授法、问题驱动教学法 多媒体信息技术(2 学时)(一)几何直观 引入:以往的课程教学:数学家庞卡莱说过这样一个故事:教师里,先生对学生说:“圆周是一定点到同一平面上等距离点的轨迹。学生们抄在笔记本上,可是谁也不明白圆周是什么。于是,先生拿起粉笔在黑板上画了一个圆圈,学生们立即欢呼起来:“啊,圆周
19、就是圆圈啊,明白了!”教师在教学中,只呈现抽象的命题信息,学生可以一字不差地记住,但是不理解,画了一个圆圈之后,就把新知识与学生原有的生活经验(数学现实)联系起来了,同时也就是把命题信息与知觉信息结合在一起,有利于学生形成认识结构。今天的课堂教学:对于圆,比如说为什么车轮是圆形的?如何将一张纸撕成一个圆形?主张学生主动参与到课堂教学中来。1.几何学的诞生 7 最初的一些几何概念和知识要追溯到史前时期,它们是在实践活动的过程中产生的。人们为了自己的实际目的去测量长度、确定距离、估计面积和体积,最初的一些几何关系,比如说长方形的面积等于它的两边的乘积等。古希腊的学者欧第姆在公元前 4 世纪写道:“
20、几何学是埃及人发现的,从测量土地中产生的。因为尼罗河水泛滥,经常冲去边界.,这门学科和其他学科一样,是从人类的需要产生的,对于这一点没有什么惊异的,任何新产生的知识都是从不完善的状况过度到完善的状况,知识通过感性的感觉而产生,逐渐成为我们的考察对象,而最后变成理性的财产。”当然,土地测量不是激起古人建立几何学唯一的课题。埃及人和巴比伦人会测定最简单的面积和体积,甚至可以知道圆周率的比较精确的值,并能够计算球的表面积,也就是说他们累积了很多几何知识,却没有将之作为一门有自己的的定理和证明理论科学的几何学。公元前 7 世纪,几何从埃及到希腊,经由泰勒斯、德谟克利特发展,毕达哥拉斯学派的充实。使得几
21、何学朝着积累新的事实和阐释它们间相互关系的方向发展。这些关系逐渐的转变为从一些几何原理得到另外一些几何原理的逻辑推论。用这种方法首先形成了关于几何定理及其证明概念本身,其次阐明了哪些可以从中推导出其他原理的基本原理,这就是说阐明了几何的公理。由此,几何就这样逐渐地转变成了数学理论。公元前 3 世纪左右几何原本一位希腊天才的完美创造物一本长命的书。研究对象:几何从事于几何物体和图形的研究,研究他们的量的关系和相互位置,但是几何物体不是什么别的东西,正是舍弃了其他性质,比如说密度、颜色、重量等等,而仅仅从它的空间形式的观点来加以考虑的现实的物体。所谓舍弃了其他性质也就是说采取“纯粹形式”的现实物体
22、的空间形式和关系作为自己的对象,正是这种抽象程度把几何同其他也是研究物体的空间形式和关系的科学区分开来(比如说天文学、测地学、晶体学等,研究其位置关系是与其他性质是相互联系的)。抽象引起了几何的思辨方法,对于没有任何厚度的直线,对于“纯粹形式”是不能做实验的,只有用推理方法从一些结论导出另一些新的结论,所以所几何定理应该有推理来证明。几何原本,1607 年传入我国(前六卷)。徐光启的评价:此书有四不必:不必疑,不必揣、不必试、不必改。有四不可得:欲脱之不可得、欲驳之不可得、欲改之不可得、欲前后更置之不可得。有三至三能:似至晦,实至明,故能以其明明它物之至晦;似至繁,实至简,故故能以其简简它物之
23、至繁;似至难,实至易,故能以其易易它物之至难。易生于简,简生于明,综其妙在明而已。公设:只适用于本学科。任意两点一直线;一直线段可以向两端无线延伸而成直线;以任意一点为中心,通过任意给定的另一点可以作一圆;凡直角都相等;如果同一平面内任一直线与另外两条直线相交,同一侧的两内角之和小于两直角,则.(第五公设也是科学史上最重要的一句话)公理:适用于一切科学的真理 2.几何直观加强几何直观,是世界数学课程改革的方向。8 标准(2011 版)明确指出,几何直观主要是指“利用图形描述和分析数学问题。”“借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学
24、生直观的理解数学,在整个数学学习过程中都发挥着重要作用。”从过程而言,它与文字、数字、符号、表格等相区别,主要体现在“利用图形”;从结果来说,“不同的学生具有不同的几何直观水平”,是一种静态能力与数学素养的反应。说明:其实这是针对几何直观的作用的解释性说明,而不是对“几何直观”的明确定义。但却给我们的教学和学习以思考的依据。那么,如何界定几何直观?2.1 品味什么是几何直观?直观:所谓直观,辞海(第六版)的解释是即感性认识:其特点是生动性、具体性和直接性;中国大百科全书的解释是:“通过对客观事物的直接接触而获得的感性认识。拉丁文为,意为凝视。中国按其不同含义分别译为直观和直觉。直观的字面意义是
25、直接的观察。”克莱因:“数学不是依靠在逻辑上,而是依靠在正确的直观上”。数学的直观既是对概念和证明的直接把握。心理学家:直观是从感觉的具体的对象背后,发现抽象的、理想的能力。数学家徐利治:“直观就是借助于经验、观察、测试或类比联想,所产生的对事物关系直接的感知与认识,而几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知”。换言之,通过直观能够建立起人对自身体验与外物体验的对应关系。综上:几何直观是一种特殊的数学直观。借助于见到的(或想象出来的)几何图形的形象关系,对数学的研究对象(空间形式和数量关系)进行直接感知、整体把握的能力。形成几何直观素养:技能、能力、意识、思维方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中学数学 课程标准 教材 研究 讲稿 第一 稿前三章
限制150内