《快中子反应堆.pdf》由会员分享,可在线阅读,更多相关《快中子反应堆.pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、快中子反应堆是指没有中子慢化剂的核裂变反应堆。通常的核裂变反应堆,为了提升核燃料的链式裂变反应的效率,需要将裂变产生的高速中子(快中子)减速称为速度较慢的中子(热中子),通常加入较轻的原子核构成的中子慢化剂,比如轻水,重水等等,利用里面的氢原子作为高速中子碰撞减速的中子慢化剂。快中子反应堆-简介 快中子反应堆 快中子反应堆是指没有中子慢化剂的核裂变反应堆。通常的核裂变反应堆,为了提升核燃料的链式裂变反应的效率,需要将裂变产生的高速中子(快中子)减速称为速度较慢的中子(热中子),通常加入较轻的原子核构成的中子慢化剂,比如轻水,重水等等,利用里面的氢原子作为高速中子碰撞减速的中子慢化剂。快中子反应
2、堆-概述 原子能的释放、控制和利用,是 20 世纪重大科技成果之一。原子能是原子核裂变产生链式反应释放出的能量,故又称核能。核裂变和链式反应是在原子反应堆中进行的,所以,原子反应堆是核电站的锅炉。目前的核电站中,大多数使用的是轻水堆。轻水堆以铀-235 为燃料,以水作慢化剂作用是使高速中子减速和冷却剂。发电能力为 100 万千瓦的轻水堆,每天使用约 3 公斤铀-235。虽然用量不多,但是由于天然铀储量有限现探明约可使用 1000 年,其中铀-235 约只占 0 7,而 99 3是铀-238。铀-235 和铀-238都是铀的同位素,它们的原子核都会裂变,但铀-235 有其独特的裂变方式,当中子撞
3、击其原子核时,原子核会分裂成重量几乎相等的两部分,而铀-238 却不具备上述裂变方式,所以不能用作轻水堆的燃料。因此,当今核电站的核燃料中,铀-235 如同优质煤,而铀-238 却像煤矸石,只能作为核废料堆积在那里,成为污染环境的公害。快中子反应堆-原理 快中子反应堆不用铀-235,而用钚-239 作燃料,不过在堆心燃料钚-239 的外围再生区里放置铀-238。钚-239 产生裂变反应时放出来的快中子,被装在外围再生区的铀-238 吸收,铀-238 就会很快变成钚-239。这样,钚-239 裂变,在产生能量的同时,又不断地将铀-238 变成可用燃料钚-239。而且再生速度高于消耗速度,核燃料越
4、烧越多,快速增殖,所以这种反应堆又称“快速增殖堆”。据计算,如快中子反应堆推广应用,将使铀资源的利用率提高 50-60 倍,大量铀-238 堆积浪费、污染环境问题将能得到解决。在快中子反应堆中,不能使用水来传递堆芯中的热量,因为它会减缓快中子的速度,钠和钾的合金可用于快中子反应堆作热交换剂。热中反应堆是一种安全、干净都达到要求的经济能源,在目前以及今后一段时间内它将是发展核电的主要堆型。然而,热中子反应堆所利用的燃料铀 235,在自然界存在的铀中只占 0.7%,而占天然铀 99.3%的另一种同位素铀 238 却不能在热中子的作用下发生裂变,不能被热中子堆所利用。自然界中的铀储量是有限的,如果只
5、能利用铀 235,再有 30 年同样会面临铀 235 匮缺的危险。因此人们把取得丰富核能的长远希望,寄托在能够利用铀 235 以外的可裂变燃料上。于是,快中子增殖反应堆便应运而生。如果核裂变时产生的快中子,不像轻水堆时那样予以减速,当它轰击铀 238 时,铀 238 便会以一定比例吸收这种快中子,变为钚 239。铀 235 通过吸收一个速度较慢的热中子发生裂变,而钚 239 可以吸收一个快中子而裂变。钚 239 是比铀 235 更好的核燃料。由铀 238 先变为钚,再由钚进行裂变,裂变释出的能量变成热,运到外部后加以利用,这便是快中子增殖堆的工作过程。在快中子增殖堆内,每个铀 235 核裂变所
6、产生的快中子,可以使 12 至 16 个铀 238 变成钚 239。尽管它一边在消耗核燃料环 239,但一边又在产生核燃料钚 239,生产的比消耗的还要多,具有核燃料的增殖作用,所以这种反应堆也就被叫做快中子增殖堆,简称快堆。快堆。快堆使用直径约 1 米的由核燃料组成的堆芯,铀 238 包围着堆芯的四周,构成增殖层,铀 238 转变成钚 239 的过程主要在增殖层中进行。堆芯和增殖层都浸泡在液态的金属钠中。因为快堆中核裂变反应十分剧烈,必须使用导热能力很强的液体把堆芯产生的大量热带走,同时这种热也就是用作发电的能源。钠导热性好而且不容易减慢中子速度,不会妨碍快堆中链式反应的进行,所以是理想的冷
7、却液体。反应堆中使用吸收中子能力很强的控制棒,靠它插入堆芯的程度改变堆内中子数量,以调节反应堆的功率。为了使放射性的堆芯同发电部分隔离开,钠冷却系统也分一次回路和二次回路。一次回路直接同堆芯接触,通过热交换器把热传给二次回路。二次回路的钠用以使锅炉加热,产生 483左右的蒸气,用以驱动汽轮机发电。快中子增殖堆几乎可以百分之百地利用铀资源,所以各国都在积极开发,现在全世界已有几十座中小型快堆在运行。1 快中子反应堆-特点 快堆的物理特性对仪表控制系统的影响快堆利用重核元素(铀或钚)吸收快中子裂变释放能量,其物理设计与热堆差异很大,致使其仪表控制系统也有别于热堆仪表控制系统。1、动态参数快堆与热堆
8、相比,堆芯富集度高.能谱硬,多普勒效应比热堆小,而且快堆缓发中子份额小,中子代时间短,这些对快堆控制来说是不利的,要求快堆控制系统有更好的瞬态响应特性。2、毒物效应在快堆中,热中子几乎是不存在的因此在热堆设计中十分关键的热中子吸收截面高的材料在快堆中几乎并不显得那么重要,象“和”那样的裂变产物,相对来说是不重要的,快堆没有氙中毒问题.快堆堆芯小,快中子平均自由程比热中子长,因此快堆堆芯耦台得比热堆更紧密,不存在区域不稳定问题.因而在快堆中不必考虑功率分布波动的控制阀题,也不必象压水堆那样进行堆芯功率分布的测量,从这个意义上说对简化仪表控制系.统设计是有益的。3、反应性控制由于快堆采用钠作冷却剂
9、,无法使用仞如硼酸等可溶性毒物来控制反应性,一般采取单一的控制棒控制反应性方式,因而必须设置两套独立的控制棒停堆系统,以保证冗余和安全。4、仪表效率目前的核测仪表均为对热中子敏感,检测快中子的效率相对较低,因而要求合理考虑板测仪表的设置和灵敏度问题。2 快中子反应堆-影响 快堆堆芯小,功率密度大,热堆中使用韵冷却剂水已不能适应其快速换热,载热的要求,液态金属钠以其优良的热工特性成为快堆的冷却剜。但它在解决快堆冷却问题的同时,也带来了新问题,快堆热工特性对仪表控制系统设计具有较大影响。1、化学反应钠是活泼金属,会与水发生剧烈的化学反应,在空气中鲥够燃烧,必须设法肪止发生钠泄漏的发生,并能在发生钠
10、泄漏后限制和减轻其后果,因而在快堆中必须设置钠泄漏植测系统,并且对存在钠水界面的蒸汽发生器进行重点在线监测,防止发生钠水反应事故,一旦发生泄漏,启动蒸汽发生器保护系统,防止事故的进一步发展。2、钠的活化特性由于钠容易被活化,一次钠系统带有较强的放射性.因而快堆一般设计成三个回路,比压水堆多一个中间回路(二次钠回路),这样就增加了热传输的时间,加大了电厂系统的时间常数,使得全厂的协调控制难度增加。3、堆芯温度与热堆相比,快堆具有堆芯温度高,堆蕊进出口温差大,堆芯呈矮胖型,冷却剂在堆芯的流程短等特点。相应参数如表 1 所示.这就使墟芯温度变化限制变得更为突出,因为快速的温度变化对结构材料很不利,因
11、而为防止在堆功率变化时堆芯平均温度和进出=温差变化太大,快堆可采取一回路流量可变运行方式,而不是象压水堆所采取的一回路流量固定运行方式。这样可以避免在功率变化时堆芯温度场出现较大变化,以减轻对堆芯机构材料的热冲击。正是出于此种考虑,国外快堆一般尽可能减少紧急停堆次数,减少保护停堆动作,而-堆的本身的固有安全特性也为此提供了可行性。由于钠的沸点很高,因而不存在压水堆的偏离泡核沸腾的问题,相对减轻丁反应堆保护系统的压力,压水堆堆芯冷却剂出口温度与饱和温度相差只有 20左右,一旦系统减压或冷却剂温度升高,将出现堆芯沸腾,降低换热效率.造成燃料元件过热,损坏,后果非常严重,因而压水堆花很大精力用于防止
12、冷却荆沸腾,维持堆芯冷却剂保持一定的过冷度。为此 2 襄热工参数对照表堆型难蔷平均温度1 堆芯进出椎差七)堆志尺寸(直径)压承堆(91)30 左右 35403.04、366 快堆柏 0 以上 150 左右格国超凤凰 4701537/1 俄罗斯一600463.5173206,075 中厦实量快堆 445700.6,05 设置了超温保护,超功率矗保护等保护参数,并且要根据具体工况调整这些保护参数整定值,使得保护系统非常复杂,而快堆则不然。快堆一次冷却剂系统基本工作在常压下,钠的沸点镊高,常压下沸点按近 900,而工作温度为 500左右,存在着 300以上的过冷度。出现钠沸腾属于极稀有工况,出现这种
13、工况前早已因其它参数越限而引起保护系统动作了。因而保护系统的设计可以不考虑钠沸腾的问题。4、堆芯压力压水堆失压后,冷却剂大量蒸发,可能出现堆芯课露的危险,需要设置专门的安全注人系统为其补水,快堆一次冷却剂系统基本工作在常压下,并且为防止主容器发生泄漏,设置了保护容器,一般不会有堆芯裸露的危险,因而快堆不必设置安全注人系统,也不必专门设置稳压系统。由于压水堆工作在高压下,任何意外的系统减压都将使堆芯发生沸腾和偏离泡核沸腾比小于 1-3 的危险性增加,因而对冷却荆低压必须进行保护,然而压水堆冷停堆状态下,冷却剂处于常压状态,这就需要在反应堆正常的启动和减压过程中,能够闭锁这类保护信号,增加了保护系
14、统的允许和联锁关系的复杂性,快堆冷却剂基本工作在常压下,不涉及减压保护等同题。允许和联锁关系相对简单一些。5、蒸汽发生器由于快堆二回路的压力低于三回路的压力,因而其蒸汽发生器的结构与热堆不同,快堆普遍采用直流式蒸汽发生器,管侧为三回路的汽一水回路,壳侧为二回路的钠。三回路刨空间小,缓冲能力差,对负荷的变化更加敏感,因而快堆蒸汽发生器的保护问题相对突出,对蒸汽旁排系统要求有更快的响应,不能照般压水堆的模式,直流式蒸汽发生器的水位无法直观监铡。快中子反应堆-发展现状 快中子反应堆 在技术上,快堆比轻水堆难度要大得多。但是,由于它具有独特的优点,所以,美、法、日、德、俄等国都在积极开发研究快中子反应
15、堆。早在 1967 年,法国就建成了一座实验反应堆。1974 年,25 万千瓦的快中子反应堆投入运行。1984 年又建成了 120 万千瓦的大型商业快堆核电站。日本也设计出输出功率为 30 万千瓦的快中子反应堆。堆心核燃料采用铀-钚混合氧化物,堆心外围是铀-238,该快堆可使铀资源的利用率提高 50 倍,经济效益和社会效益十分明显。除前述5 个国家外,澳大利亚、挪威、西班牙、瑞典、瑞士、意大利和 zg 目前也积极开展了有关的研究工作。2010 年 7 月 21 日,zg 核工业集团公司今日在北京宣布:由中核集团 zg 原子能科学研究院自主研发的 zg 第一座快中子反应堆zg 实验快堆(CEFR
16、)达到首次临界。这是 zg 核电领域的重大自主创新成果,意味着 zg 第四代先进核能系统技术实现了重大突破。由此,zg 成为世界上少数几个掌握快堆技术的国家之一。由中核集团中国原子能科学研究院自主研发的我国第一座快中子反应堆 zg 实验快堆(CEFR)今天达到首次临界。中核集团公司党组成员、副总经理、中国实验快堆领导小组组长杨长利表示,这意味着 zg 第四代先进核能系统技术实现了重大突破,成为世界上第 8 个拥有快堆技术的国家。杨长利介绍,快中子反应堆代表了第四代核能系统的发展方向,其形成的核燃料闭合式循环,可使天然铀资源利用率从压水堆的约 1%提高至 60%以上,同时还能让核废料充分燃烧,减
17、少污染物质的排放,实现放射性废物最小化。由于利用率的提高,相对较贫的铀矿也有了开采的价值,这将使世界可采铀资源增加千倍。发展和推广快堆,因此被认为从根本上解决世界能源的可持续发展和绿色发展问题。据了解,目前中核集团已初步建立起钠冷快堆技术的研发体系和标准规范体系,全面掌握了快堆物理、热工、力学以及总体、结构、回路、仪控、电气设计技术,取得了以钠工艺为代表的一批自主创新成果,申请了百余项专利。值得一提的是,实验快堆有近 200 多个系统,设备达 7000 多台套。国产化率达到 70以上。在工程设计方面,实验快堆也取得了多方面突破:在世界上首次采用了非能动事故余热排出系统;自主完成了反应堆换料系统设计。作为国家 863 计划重大项目,zg 实验快堆是中核集团第四代核能技术研发的重点,该堆采用已在美、法、俄、日等国家有多堆运行经验的钠冷快堆技术,其热功率为 65 兆瓦,电功率 20 兆瓦。建造实验快堆是 zg 快堆发展第一步。杨长利同时表示,未来中核集团将加快推进第四代核电机组zg 示范快堆的建造,推动中国铀钚混合燃料制造技术等配套技术的发展。3
限制150内