几何画板在初中数学教学中的作用.pdf
《几何画板在初中数学教学中的作用.pdf》由会员分享,可在线阅读,更多相关《几何画板在初中数学教学中的作用.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 几何画板在初中数学教学中的作用 李莉军 摘要:数学是研究现实世界空间形式和数量关系的一门系统性、逻辑性及相关性较强的学科。几何画板作为一个有力的数学教学工具,作图方便准确,色彩鲜艳,富有动感,可使课堂高潮迭起,妙趣横生,从根本上改变了数学学科枯燥、乏味的特点,极大限度地激发了学生的学习热情。本文结合作者在初中数学教学中使用几何画板的一些经验,和大家探讨下几何画板在其中的作用。关键词:几何画板 初中数学 初中函数 几何变换 一、传统的教学模式 传统的数学课基本上都是以这样的方式进行:复习旧知识引入新课学习新概念和定理例题讲解学生模仿性解题教师点评、总结。这种教学模式下学生的发展还是基本上以老师
2、为中心,在很大程度上还处于老师讲学生听的状态,并没有使课堂真正成为数学活动的教学。新课标的数学大纲明确规定:教师应该帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的教学知识与技能、数学思想和方法,获得广泛的数学活动的经验。因此,为适应新的形势,教师的观念要更新,特别是课堂教学的模式要改革,要能体现出“向课堂要效率,向教改要质量”的教学原则和“面向全体,因材施教”的教学思想,完善教学模式,改进教学方式。二、要想有进步必须思变。如今,信息技术在数学中的应用越来越得到一线教师的重视与青睐,也引起了许多教育工作者对这个问题的思考与探索。一线教师普遍在不断提高信息技术的运用水平,特别是计算机操作
3、及软件使用水平以适应新的形势。对于数学教师,使用的动画制作软件主要有几何画板、Authorware、Flash 等。虽说 Flash 与 Authorware 在动画制作上很有利,但在操作上比较复杂,难以掌握,不太符合日常工作繁重的教师实际。而几何画板具有容易学习、操作简单、功能强大等特点,已成为广大中学数学教师进行信息技术与数学教学整合的首选软件。几何画板在数学教学中已发挥着越来越重要的作用。几何画板是 Windows 环境下的一个动态的数学工具软件。它提供了画点、画线(线段、射线、直线)、画圆(正圆)的工具,以及旋转、平移、缩放、反射等图形变换功能。几何画板又不同于其他绘图工具,它能动态地
4、保持给定的几何关系,便于学生自行动手在变化的图形中发现恒定不变的几何规律,从而打破了千百年来数学学习就是一支笔一张纸的纯理论局面,成为提倡数学实验,培养学生创新能力的有效工具。把它和数学教学进行有机地整合,能为数学课堂教学营造一种动态、开放、新型的教学环境。本文笔者就重点谈谈几何画板在初中数学课堂教学实践中的简单应用。三、几何画板简介与教学中的实际应用(一)几何画板简介 几何画板是适用于数学、平面几何、物理的矢量分析、作图,函数作图的动态几何工具。由美国 Key Curriculum Press公司制作并出版的优秀教育软件,1996 年该公司授权人民教育出版社在中国发行该软件的中文版。正如其名
5、“21 世纪动态几何”,它能够动态地展现出几何对象的位置关系、运行变化规律,是数学与物理教师制作课件的“利剑”!(二)几何画板在教学中的应用案例 1、几何画板直观的反映函数中两个变量的关系 例一:利用几何画板帮助学生理解函数与图像的关系,化抽象为具体。函数及其图像对于初一的学生难于理解,为了展示图像对函数关系的动态反映,把抽象变为具体,以课堂演示2xy 这条直线的形成为例。打开几何画板,建立坐标系,先在 x 轴上取点 A,度量该点的横坐标,然后利用“度量”菜单中的“计算”功能计算出 2x,“度量”菜单下的“绘制点”绘出点 B(x,2x),最后将点 B 设置为“显示”菜单下的“追踪绘制的点”。师
6、:图中的点 B 是满足2xy 函数关系的点,大家知道这样的点有多少个吗?生:无数个 师:这无数个满足2xy 函数关系的点有什么特点呢?请大家仔细观察(慢慢的拖动图 1 中的 A 点)拖动的过程中请同学们注意变化的点 B 的横纵坐标的数值,是否满足2xy 关系?生:都满足。师:这些点形成了什么图形?生:点动成线,形成了一条直线。图 1 这个演示的两个作用:帮助学生理解函数图像是由无数个满足函数关系的点形成的 弥补了描点法画图像只能由有限个点来猜测图像形状的弱点,仅仅是在纸上描点,学生不禁会问为什么图像就是直线呢?通过课件演示,学生清楚地看到了直线的形成过程,印象十分深刻。例二:利用几何画板形象地
7、反映双曲线的图像特点,深化对图像的理解。反比例函数的图像双曲线的特点,学生也不好把握,什么叫“与坐标轴无限接近,但永不相交”?为了帮助学生理解双曲线的特点,可以利用几何画板来形象地展示这一特点。首先建立坐标系,在 x 轴上取点 A,度量该点的横坐标,然后利用“度量”菜单中的“计算”功能计算出x6,“度量”菜单下的“绘制点”绘出点 B(x,x6),最后依次选中点 A、B,选择“构造”菜单中的“轨迹”,完成双曲线的绘制。师:当 x0 时,x 越大,x6的值如何变化?生:x 越大,x6越小。师:大家能想象随着 x 的增大,点(x,x6)的变化吗?(学生思索)师(演示向右拖动图 2 中的点 A),横坐
8、标 x 的数值越来越大,大家观察双曲线上的点有什么特点?生:向右运动,与 x 轴的距离越来越小。师:图像上的点会与 x 轴相交吗?生:不会,因为 y 不为 0。再观察双曲线与 y 轴的关系,师生共同总结双曲线特点:无限接近坐标轴,但永不相交。图 2 通过这样的演示,学生对双曲线的特点有了更加直观的感受和深刻的印象,同时更进一步帮助学生认识了函数和图像的关系。例三:利用几何画板帮助学生理解函数的自变量的取值范围对函数图像的影响。初学函数时,学生往往无法结合自变量的取值范围去画函数图像,比如函数)2x2-2xy(,同学容易画成直线而不是线段。打开几何画板,在 x 轴上取2,2范围的线段,在线段上任
9、取点 A,度量该点的横坐标,然后利用“度量”菜单中的“计算”功能计算出 2x,“度量”菜单下的“绘制点”绘出点 B(x,-x+2),最后将点 B 设置为“显示”菜单下的“追踪绘制的点”,并向坐标轴引垂线。图 3 师:(拖动图 3 中的点 A)请同学们观察图中自变量 x 的取值范围?生:2x2 师:观察最左端点 B 能到达的位置,最右端能到达的位置?生:最左端到点4,2,最右端到点0,2 师:观察点 B 形成的图像是什么形状的?生:线段 师:为什么图像不是直线而是线段呢,这是由什么决定的?生:由自变量限制在一定范围内决定。通过几何画板的动态演示,学生在变化的点、变化的横纵坐标中去寻找规律,去理解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何 画板 初中 数学 教学 中的 作用
限制150内