数学建模模糊综合评价法.pdf
《数学建模模糊综合评价法.pdf》由会员分享,可在线阅读,更多相关《数学建模模糊综合评价法.pdf(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 .Word 文档 学科评价模型(模糊综合评价法)摘要:该模型研究的是某高校学科的评价的问题,基于所给的学科统计数据作出综合分析。基于此对未来学科的发展提供理论上的依据。对于问题 1、采用层次分析法,通过建立对比矩阵,得出影响评价值各因素的所占的权重。然后将各因素值进行标准化。在可共度的基础上求出所对应学科的评价值,最后确定学科的综合排名。(将问题 1 中的部分结果进行阐述)(或者是先对二级评价因素运用层次分析法得出其对应的各因素的权重(只选取一组代表性的即可),然后再次运用层次分析法或者是模糊层次分析法对每一学科进行计算,得出其权重系数)。通过利用 matlab 确定的各二级评价因素的比较矩
2、阵的特征根分别为:4.2433、2、4.1407、3.0858、10.7434、7.3738、3.0246、1 对于问题 2、基于问题一中已经获得的对学科的评价值,为了更加明了的展现各一级因素的作用,采用求解相关性系数的显著性,找出对学科评价有显著性作用的一级评价因素。同时鉴于从文献中已经有的获得的已经有的权重分配,对比通过模型求得的数值,来验证所建模型和求解过程是否合理。对于问题 3、主成份分析法,由于在此种情况下考虑的是科研型或者教学型的高校,因此在评价因素中势必会有很大的差别和区分。所以在求解评价值的时候不能够等同问题 1 中的方法和结果,需要重新建立模型,消除或者忽略某些因素的影响和作
3、用(将问题三的部分结果进行阐述)。一、问题重述 .Word 文档 学科的水平、地位是评价高等学校层次的一个重要指标,而学科间水平的评价对于学科本身的发展有着极其重要的作用。而一个显著的方面就是在录取学生方面,通常情况下一个好的专业可以录取到相对起点较高的学生,而且它还可以使得各学科能更加深入的了解到本学科的地位和不足之处,可以更好的促进该学科的发展。学科的评价是为了恰当的学科竞争,而学科间的竞争是高等教育发展的动力,所以合理评价学科的竞争力有着极其重要的作用。鉴于学科评价的两种方法:因素分析法和内涵解析法。本模型基于某大学(科研与教学并重型高校)的 13 个学科在某一时期内的调查数据,包括各种
4、建设成效数据和前期投入的数据。通过计算每一级、每一个评价因素所占的权重,确定某一学科在评价是各因素所占的比重,构建评价等级所对应的函数。通过数值分析得出学科的评价值。需要解决一下几个问题:1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。2、模型分析,给出建立模型的适用性、合理性分析。3、假设数据来自于某科研型祸教学型高校,请给出相应的学科评价模型。二、符号说明与基本假设 2.1 符号说明 符号说明 S评价数(评价所依据的最终数值)X影响评价数值的一级因素所构成的矩阵 .Word 文档 x一级因素的平均值 x一级因素 n 表示每一学科所含的一级评价因素 m 表示每一以及评价因素所
5、包含的二级评价因素 Y二级因素矩阵 y二级因素平均值 y二级因素的平均值 第三题中科研性因素的权重值 第三题中教学性因素的权重值 Xi,j 二级评价因素 二级评价因素的权重 Xi一级评价因素 一级评价因素的权重 i学科评价对二级评价因素的权重 R(m)表示第三题中的一级评价因素 基本假设:1、所有数据均是对相同的时间段统计得到的 2、不考虑随外界环境或者时间改变而发生的同一条件影响力的变化 3、忽略社会需求等对评价因素的影响,单纯的考虑学科自身的实力。4、在进行适用性验证时,学科等级因素不发生改变。.Word 文档 5、假设每个学科的二级因素权重值都相等。不存在二级权重值的差异 6、假设该大学
6、为综合性大学,没有明显意义上的学科偏重 7、由于科研评价要易于教学评价,所以科研评价因素应该高于教学评价因素。8.、假设各方面影响因素都是在鉴于对学科实力的基础上进行的,不存在随意性 9.不考虑已经获得的称号或者是荣誉,比如“985”、“211”等。10 为了能够更好的促进专业的发展,应该适当增加有发展潜力的评价因素的权重值 11问题三中为使模型简单,把包含“科研”二字的归为科研型因素,把所有不包含“科研”二字的归为教学型因素。不存在相互的交叉和包含现象 1 综合评价模型 所研究问题中涉及到的递阶层次结构图如下 .Word 文档 其中的为下图 中字符涵义为 b1国务院学位委员会委员 b2国务院
7、学位委员会学科评议组成员 b3长江学者特聘教授 b4国家杰出青年基金获得者 b5国家教学名师奖获得者 b5国家有突出贡献的中青年专家 队伍建设b2b1b5b3b4b6b7b8教授副教授评价指标数值学科建设所获教学奖所获科研经费所获科研成果队伍建设科研成果人才培养前期投入资金国家一级重点学科国家二级重点学科博士学位授权点硕士学位授权点国家级省级国家级省部级其他横向国家级部级省级培养博士培养硕士博士后 .Word 文档 b7国家“973”项目首席科学家 b8教育部新世纪(原跨世纪)优秀人才 图为 1.1 二级评价因素的权重以及一级评价因素值的确定 近年来,层次分析法在评价类的问题解决中扮演着十分重
8、要的角色。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。它把复杂问题分解成组成因素,并按支配关系形成层次结构,然后用两两比较的方法确定决策方案的相对重要性。在学科评价中,首先通过选取一组或者几组二级评价因素的数据,应用层次分析法确定某以及评价因素下二级评价因素所占的权重,并在假设条件下,各学科的二级评价因素所对应的权重保持相同。计算出各自的一级评价因素值。再次对每一学科利用层次分析法,确定一级评价因素所占的权重比例,根据各值,求出学科最终的评价值。(1)其中的iX表示一级评价因素,i表示所对应的一级评价因素的权重。采用 0-9 比例标度方法构建两两比较判断矩阵()ijn
9、 na 解决特征根问题 maxA (2)得到比较矩阵,其中对于学科建设的比较矩阵为 81iiiSX科研成果SCI/SSCIEICSSCIISTP专著政府报告专利 .Word 文档 比较矩阵的建立依赖于九点标度法,能够比较准确的表达出评价因素之间的相互关系。其中九点标度法的原理为 1 表示两个元素相比,具有同样的重要性 3 表示两个元素相比,一个元素比另一个元素稍微重要 5 表示两个元素相比,一个元素比另一个元素明显重要 7 表示两个元素相比,一个元素比另一个元素强烈重要 9 表示两个元素相比,一个元素比另一个元素极端重要 2,4,6,8 为上述相邻判断的中值 利用 matlab 求解,然后对特
10、征向量进行归一化变换,得到向量 1457114441113541111743M .Word 文档 其所对应的特征值为 4.2433 根据计算一致性指标公式 (3)随机一致性指标的分布如下图所示:阶数 1 2 3 4 5 6 7 8 R.I.0 0 0.52 0.89 1.12 1.26 1.36 1.41 阶数 9 10 11 12 13 14 15 R.I.1.46 1.49 1.52 1.54 1.56 1.58 1.59 通过以上公式求得1.0.09110.1C R,所以认为原比较矩阵一致性良好 0.59020.24670.10720.0560max.1nC In.C IC RR I(4
11、).Word 文档 同样方法对 X2、X3、X4、X5、X6、X7、X8 可求出相应的归一化条件下的特征向量,即获得相应的二级评价因素的权重值。利用公式 3、4 进行相应的一致性检验。如一致性检验不能通过则修改比较矩阵。2.由上述得到的二级评价因素权重值利用公式 由此式通过 matlab 程序计算得到各一级评价值为 2.0002 1.8765 1145 11.6373 60.1949 1174.1 519.8175 4689 3.49 1.3506 761.6 15.7781 51.6296 466.8 932.0545 5123 2.4386 0.1753 322 2.7986 26.211
12、 217.9 133.64 1876 1.9442 0 124.1 15.4974 13.1806 148 286.2815 1234 3.1303 1.7012 405 15.7042 22.9577 85.3 179.0075 1345 1.1747 0.5259 147.3 5.3904 19.3487 237.9 255.034 987 6.3736 1.9283 1102.7 12.0964 80.1938 190.9 783.222 1070 3.4567 2.2271 226.3 17.2827 24.7576 165.2 851.715 792 3.3667 0.1753 74
13、.7 24.2354 25.6358 169.1 719.1155 450 2.4775 0.7012 35 12.1284 13.7054 101.2 283.8675 360 2.1539 0 18.9 16.6035 11.1382 85.6 256.167 362 1(,)mijXXi j(5).Word 文档 2.9671 3.0518 31.4 13.362 14.017 60.3 341.7585 370 1.2867 2 19.4 17.9725 13.9324 60.8 482.568 460 鉴于不同的数据有着不同的取值以及范围,给共同处理带来了问题,所以在求解学科评价值的
14、时候对一级评价因素值实行数据的标准化处理,以达到公度化数据的要求和目的 其中 所有数据标准化后如下表所示:-0.5952 0.6659 1.9864 -0.4107 1.4538 3.1065 0.2064 2.0179 0.5286 0.1415 1.0409 0.3464 1.0547 0.7459 1.7151 2.2900 -0.2645 -1.0305 -0.0431 -2.0268 -0.1296 -0.0848 -1.2068 0.2542 -0.6374 -1.2053 -0.5312 0.2951 -0.7367 -0.3181 -0.6482 -0.1484 0.2573
15、0.4911 0.1615 0.3329 -0.2812 -0.5274 -1.0408 -0.0788 -1.2179 -0.6809 -0.4740 -1.5529 -0.4493 -0.0181 -0.7625 -0.3032 2.7037 0.7176 1.8821 -0.3268 2.3856 -0.1749 1.1704 -0.2512 0.5035 1.0155 -0.2791 0.6215 -0.1973 -0.2607 1.4210 -0.4255(6)21111,(),()1nniiiiXXXXinn(7),(1,2,38)iiXXMi .Word 文档 0.4356 -1
16、.0305 -0.6530 1.8928 -0.1564 -0.2477 0.9358 -0.6399 -0.2352 -0.5061 -0.7509 -0.3209 -0.7123 -0.4743 -0.6570 -0.6963 -0.4792 -1.2053 -0.7906 0.4973 -0.8319 -0.5264 -0.7584 -0.6951 0.1342 1.8379 -0.7598 -0.0954 -0.6978 -0.6108 -0.4452 -0.6901 -1.1334 0.7891 -0.7894 0.7476 -0.7017 -0.6092 0.0701 -0.633
17、6 得到标准化以后的数据,利用公式 求得各学科的评价值。在一定的时代背景下,对于一所综合性大学,由于教学的评价没有确定的标准(评价主观性比较强),所以在整个专业的评价中,科研所占的权重应该高于教学的权重,以增加模型的适用性。通过下式计算每个学科最终的评价值:再综合上述公式得到一个总公式 (8)iiSX总81()nSM i(9).Word 文档 构建一级评价因素的比较矩阵 X1 X2 X3 X4 X5 X6 X7 X8 X1 1 2 3 3 1/2 1/2 2 0 X2 1/2 1 1/2 1/2 1 0 1/2 0 X3 1/3 2 1 1 1 1 0 2 X4 1/3 2 1 1 0 2 1
18、 0 X5 2 1 1 0 1 1 2 1 X6 2 0 1 1/2 1 1 1 1 X7 1/2 2 0 1 2 1 1 2 X8 0 0 1/2 0 1 1 1/2 1 通过 matlab 程序解得特征根max=7.5489,特征向量为 n111i 1211111(,)(,)S11(,)(,)1mnmjijnmnmijiiX i jX i jnX i jX i jnn 总0.51550.18190.30690.3037 0.43520.38010.3864(10).Word 文档 将该向量进行标准化得出向量 0.1919 0.0677 0.1142 0.1130 0.1620 0.1414
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 模糊 综合 评价
限制150内