化工原理课程设计-乙醇-水精馏塔浮阀塔课程设计大学论文.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《化工原理课程设计-乙醇-水精馏塔浮阀塔课程设计大学论文.doc》由会员分享,可在线阅读,更多相关《化工原理课程设计-乙醇-水精馏塔浮阀塔课程设计大学论文.doc(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、燕京理工学院课程设计化工原理课程设计乙醇水浮阀精馏塔设计化学工程与工艺化工1308班学号12010830指导教师摘 要本设计为分离乙醇-水混合物,采用筛板式精馏塔。精馏塔是提供混合物气、液两相接触条件,实现传质过程的设备。它是利用混合物中各组分挥发能力的差异,通过液相和气相的回流,使混合物不断分离,以达到理想的分离效果。选择精馏方案时因组分的沸点都不高所以选择常压,进料为泡点进料,回流是泡点回流。塔顶冷凝方式是采用全凝器,塔釜的加热方式是使用再沸器。精馏过程的计算包括物料衡算,热量衡算,塔板数的确定等。然后对精馏塔进行设计包括:塔径、塔高、溢流装置。最后进行流体力学验算、绘制塔板负荷性能图。
2、乙醇精馏是生产乙醇中极为关键的环节,是重要的化工单元。其工艺路线是否合理、技术装备性能之优劣、生产管理者及操作技术素质之高低,均影响乙醇生产的产量及品质。工业上用发酵法和乙烯水化法生产乙醇,单不管用何种方法生产乙醇,精馏都是其必不可少的单元操作。浮阀塔具有下列优点:1、生产能力大。2、操作弹性大。3、塔板效率高。4、气体压强降及液面落差较小。5、塔的造价低。浮阀塔不宜处理易结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。关键词:乙醇水精馏 浮阀塔 连续精馏 塔板设计I目 录前 言 1第一章 设计任务书21.1、设计条件21.2、设计任务21.3、设计内容3第二章
3、设计方案确定及流程说明5第三章 塔板的工艺设计73.1、全塔物料衡算 73.2、塔内混合液物性计算 83.3、适宜回流比 153.4、溢流装置 213.5、塔板布置与浮阀数目及排列 223.6、塔板流体力学计算 253.7、塔板性能负荷图 293.8、塔高度确定 33第四章 附属设备设计354.1、冷凝器的选择 354.2、再沸器的选择 36第五章 辅助设备的设计385.1、辅助容器的设计385.2、管道设计391燕京理工学院课程设计第六章 控制方案42第七章 设计心得与体会42附录一 主要符号说明43附录二 塔计算结果表45附录三 管路计算结果表47文 献 综 述48III前 言 乙醇(C2
4、H5OH),俗名酒精,是基本的工业原料之一,与酸碱并重,它作为再生能源犹为受人们的重视。工业上常用发酵法(C6H10O5)n和乙烯水化法制取乙醇。乙醇有相当广泛的用途,除用作燃料,制造饮料和香精外,也是一种重要的有机化工原料,如用乙醇制造乙酸、乙醚等;乙醇又是一种有机溶剂,用于溶解树脂,制造涂料。 要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,
5、还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。 浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。浮阀有很多种形式,但最常用的形式是F1型和V-4型。F1型浮阀的结果简单、制造方便、节省材料、性能良好,广泛应用在化工及炼油生产中,现已列入部颁标准(JB168-68)内,F1型浮阀又分轻阀和重阀两种,但一般情况下都采用重阀,只有处理量大且要求压强降很低的系统中,才用轻阀。浮
6、阀塔具有下列优点:1、生产能力大。2、操作弹性大。3、塔板效率高。4、气体压强降及液面落差较小。5、塔的造价低。浮阀塔不宜处理易结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。I一 设计任务书1.1 设计条件处理量9万吨/年操作条件:精馏塔塔顶压强:1. 03 atm(绝对压强)进料液状态:自选回流比:自选加热蒸汽压力:低压蒸汽单板压降:75mm液柱乙醇-水平衡数据自查液料组成(质量分数):30%塔顶产品质量组成(质量分数):90%塔顶易挥发组分回收率每年实际生产天数:300天1.2 设计任务精馏塔的物料衡算塔板数的确定精馏塔的工艺条件及有关数据的计算精馏塔的塔体
7、工艺尺寸的计算塔板主要工艺尺寸的计算塔板的流体力学验算塔板负荷性能图精馏塔接管尺寸的计算1.3设计内容 工艺设计选择工艺流程和工艺条件1) 加料方式:贮罐 加料泵 精馏塔。2) 进料热状态:泡点进料,进料根据能量充分合理利用和节能原则,可利用塔顶蒸汽的冷凝热对料液进行预热至沸点。3) 塔顶蒸汽冷凝方式:在分凝器中利用塔顶蒸汽的冷凝热对料液进行预热,饱和液体进入回流罐,饱和气体然后在全凝器中进一步冷凝成饱和液体进入回流罐。4) 再沸器加热方式:间接加热。5) 塔顶产品的出料状态:塔顶产品冷却至常温后进产品贮槽。塔底采出物流的能量另作它用。精馏工艺计算 物料衡算确定各物料流量。确定适宜回流比。精馏
8、塔设备设计塔板设计和流体力学计算对精馏段和提馏段分别进行塔板设计和流体力学计算。确定溢流装置的设计,塔盘布置,塔盘流动性能的校核。绘制塔板汽液负荷性能图分别画出精馏段和提馏段的塔板汽液负荷性能图。精馏塔机械结构和塔体附件a.接管规格:根据流量和流体性质,选取经验流速,确定进料管、塔顶蒸汽管、回流液管、塔釜再沸器进液管和蒸汽管的接管规格。b.全塔高度:包括上下封头、裙座高度。附属设备设计和选用完成塔底再沸器的详细设计计算。泵选型。换热器选型:对原料预热器、塔顶产品冷却器等进行选型。塔顶冷凝器设计选型:根据换热量、回流管内流速、冷凝器高度对塔顶冷凝器设计选型。原料和产品储罐的设计计算。输送管路的设
9、计计算。控制仪表的选择参数。编写设计说明书设计说明书是将本设计的详细介绍和说明。设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。设计说明书应附有带控制点的工艺流程图,精馏塔、塔板结构和再沸器工艺条件图,计算机程序框图和源程序。设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献;设计体会等。图纸用2#图纸绘制带控制点的工艺流程
10、图1张;第二章 设计方案确定及流程说明塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔内气液接触部件的形式,可以分为填料塔和板式塔。板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。 本设计的任务为分离乙醇水二元混合物,采用连续精馏流程。本设计采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔。塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐之中。回流比根据经济核算得到,且最适宜回流比与最小回流比的关系范围为。
11、塔底采用间接蒸汽加热,塔底产品经冷却后送至储罐。 塔板类型选择浮阀塔的优点是结构简单、制造方便、造价低;塔板开孔率大,生产能力大;由于阀片可以随气量的变化自由升降,故操作弹性大;因上升气流水平吹入液层,气液接触时间长,塔板效率高。其缺点是处理易结焦、高粘度的物性时,阀片易于塔板粘结,故操作过程中有时会发生阀片脱落和卡死等现象,导致塔板效率下降。但乙醇水物系属于不易结焦、低粘度物系,因而不存在上述问题。综合考虑各类塔板的优缺点和待分离物系特点,确定选择浮阀塔,类型为常用的F1型。 操作压力的选择条件设定塔顶操作压力为常压,不需设置真空设备或加压设备。塔底压力略高于常压,但非常压下物系平衡数据较难
12、获得,故在计算过程中不考虑压力变化引起的物系组成变化和温度变化,这是本设计的一个不足之处。进料热状况的选择本设计采用泡点进料,此时,进料热状态参数q=1,精馏段和提馏段气体摩尔流量相同,体积流量也相近,塔径基本相同。加热方式的选择本设计采用间接蒸汽加热,塔底设再沸器,加热蒸汽温度120。能量的利用问题精馏塔塔底再沸器输入的能量大部分被塔顶冷却剂带走,能量利用率较低,故利用温度较高的产品(乙醇)或副产品(水)以及冷凝后的加热蒸汽对原料液进行余热,也可通过别的方式利用余热。 图21乙醇-水精馏塔工艺流程简图第三章 塔板的工艺设计3.1 全塔物料衡算3.1.1 原料液质量组成(乙醇,下同)摩尔组成
13、质量流量 平均摩尔质量 摩尔流量 3.1.2 塔顶采出液质量组成 摩尔组成 质量流量 平均摩尔质量 摩尔流量 3.1.3 塔底采出液质量流量 质量组成 摩尔流量 摩尔组成 平均摩尔质量 3.2 塔内混合液物性计算3.2.1 温度常压下乙醇水物系的平衡数据见表2,利用拉格朗日插值法(或安托因方程)求的各点温度。 表31 常压下乙醇-水系统t-x-y数据进料温度(泡点) ()塔顶温度(露点) ()塔底温度(泡点) ()精馏段平均温度 ()提馏段平均温度 ()3.2.2 密度已知:混合液密度 混合气密度 3.2.3 平均摩尔质量精馏段 ()液相组成 气相组成 所以 提馏段 ()液相组成 气相组成 所
14、以 3.2.4 液相质量组成精馏段 提馏段 3.2.5 纯物质密度温度/乙醇水温度/乙醇水80735971.895 720961.8585730968.6100716958.490724965.3不同温度下乙醇和水的密度见表2 表32 不同温度下乙醇和水的密度精馏段 ()乙醇 水 提馏段 ()乙醇 水 3.2.6 液相密度精馏段 提馏段 3.2.7 气相密度 精馏段 提馏段 3.2.8表面张力二元有机物水溶液表面张力可用下式计算公式 式中,下标w和o分别代表纯水和纯有机物,上标代表表面层,和分别代表水和有机物在表面层内的比体积分数,由下列诸式联立求出: 而体积分数和分别为 式中,q为与有机物特
15、征和大小有关的常数,对于乙醇,q=2。不同温度下乙醇和水的表面张力见表3表33 不同温度下乙醇和水的表面张力温度()708090100乙醇表面张力(dyn/cm2)1817.1516.215.2水表面张力(dyn/cm2)64.362.660.758.8 精馏段 ()表面张力:乙醇 水 摩尔体积:乙醇 水 已知X1=0.4316,XW=1-X1=1-0.4316=0.5684 联立解得 提馏段 ()表面张力:乙醇 水 摩尔体积:乙醇 水 已知X0=0.0568 ,XW=1-X0=1-0.0568=0.9432所以: 联立解得 3.2.9 粘度()查表得:()查表得:乙醇和水见表4表34 液体粘
16、度数据关联温度708090100110乙醇0.5230.4950.4060.3610.324水0.40610.35650.31650.28380.2589根据公式提馏段粘度:根据公式提馏段粘度:3.2.0 相对挥发度精馏段挥发度:由提馏段挥发度:由3.3 适宜回流比3.3.1 最小回流比根据表1,用AutoCAD软件作出常压下乙醇水物系的x-y图(图1),过塔顶采出点D(0.7788,0.7788)作平衡曲线的切线,故最小回流比读得(图1): ,取实际回流比 图31 最小回流比3.3.2 塔内物料气液相体积流量计算 精馏段摩尔流量: 质量流量:体积流量: 提馏段摩尔流量:质量流量:体积流量:
17、3.3.3 理论塔板数关于理论板层数的计算,通常可以采用图解法和逐板计算法。精馏段操作线方程为: 精馏段操作线方程为:y = 0.6951 x - 0.2257提馏段操作线方程为:根据点(0.7788,0.7788)起在平衡线和操作线间画阶梯与平衡线交点小于0.0017为止,得理论值NT=19块,进料板为16块。提馏段操作线方程为:y =1.7606 x - 0.0027图32 理论塔板数3.3.4 理论塔板数如图,理论塔板数:含再沸器理论塔板数为19,进料板是第16块。精馏段理论塔板数,提馏段理论塔板数(含进料板)3.3.5 塔板效率本体系为非理想体系,故根据分别计算精馏段和提馏段塔板效率。
18、精馏段 提馏段 3.3.6 实际塔板数精馏段 提馏段 (包括进料板,不含再沸器)总板数 (不含再沸器)全塔效率3.3.7 塔径的初步计算塔径的设计以避免塔内气液两相的异常流动为原则,即使他的空塔气速低于发生过量液沫夹带液泛的气速,然后,根据空塔气速计算塔径。 精馏段气液流动参数塔板间距,则由史密斯关联图,可得安全系数取0.7,安全气速塔径 圆整 提馏段气液流动参数 塔板间距,则 由费尔关联图,可得安全系数取0.7,安全气速塔径 圆整 塔截面积 空塔气速 提馏段:精馏段:3.3.8热量衡算乙醇与水的比热容见表五:表35乙醇与水的比热容温度tD=78.25tF=82.57tw=99.17乙醇的摩尔
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 化工 原理 课程设计 乙醇 精馏塔 浮阀塔 大学 论文
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内