于基小波变换的图像边缘检测--毕业设计.doc
《于基小波变换的图像边缘检测--毕业设计.doc》由会员分享,可在线阅读,更多相关《于基小波变换的图像边缘检测--毕业设计.doc(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章 绪 论11研究背景及意义视觉,是人类取得信息的最主要来源。统计数据显示,在人类大脑获取的信息之中,大约60%为视觉信息,20%为听觉信息,其他的例如味觉信息、触觉信息等加起来约占20%。由此可见,视觉信息对人们的重要性。然而在所有获取视觉信息的途径中,图像无疑是最主要的方式。我们每天都是在报纸、杂志、书籍、电视等大量的图像信息中度过来的。可以说,图像是用各种观测系统以不同的形式和手段观测客观世界而获得的,可以直接或者间接作用于人眼并进而产生视知觉的实体。边缘【1】,是图像的最重要的特征,它是指周围像素灰度有阶跃变化或屋顶变化的那些像素的集合。Poggio在参考文献【1】中提到“物体(的
2、边界)或许并没有对应着图像中物体(的边界),但是边缘具有十分令人满意的性质,它能大大减少所要处理的信息但是又保留了图像中物体的形状信息。”他还定义了边缘检测为“主要是(图像的)灰度变化的度量、检测和定位”。边缘检测通常有三种方式。第一种为屋顶型边缘,它的灰度是先慢慢上升到一定的程度然后再慢慢的下降。第二种为阶跃型边缘,它的灰度变化是从一个值到比它高很多的另一个值。最后一种是线性边缘,它的灰度值是从一个级别跳到另一个级别之后,再跳回来。不同的边缘有不同的特征,但在大部分情况下,我们都是把图像的边缘全部看成是阶梯型边缘,求得检测这种边缘的最优滤波器,然后用于实践中。实践证明,边缘检测对于图像的识别
3、意义重大,理由如下:第一,人眼通过追踪未知物体的轮廓(它是由一系列的边缘组成的)而扫视一个未知的物体。第二,凭经验我们知道,只要能成功的得到图像的边缘,图像的分析就会大大简化,识别也会容易得多。第三,很多图像并没有具体的物体,对这些图像的理解取决于他们的纹理性质而提取这些纹理性质与边缘检测有着密切的联系。随着计算机技术的飞速发展,利用计算机对图像信息进行加工的数字信号处理技术更是日新月异。由于边缘广泛存在于物体与背景之间、物体与物体之间、基元与基元之间且对于图像视觉特征的提取非常重要,所以边缘检测在基于计算机的边界检测、图像分割、模式识别、机器视觉等都有非常重要的作用。例如美国波音公司开发的雷
4、达自成像识别系统就广泛应用于美国空军战机之间的敌我识别;日本CANNON公司将其开发的最新的边缘检测技术应用于最新产品DIGIC4图像处理器,大大提高了拍摄的清晰度 。 随着算法的不断更新和计算机等各种设备的不断进步,边缘检测在图像信息获取等各领域的应用将会更加广泛。可以预见,在不久的将来,基于边缘检测的各种产品会伴随着我们的日常生活,与我们息息相关。12图像的边缘检测综述所谓边缘检测,主要是指图像灰度变化的度量、检测和定位【2】。现阶段,边缘检测的方法主要有以下几种:(1)检测梯度的最大值。因为边缘通常发生在灰度值变化较大的地方,对应的就是函数梯度较大的地方,所以一种比较理想的方法就是寻找好
5、的求导算子。现在常用的算子有Roberts【3】算子、Prewitt算子和Sobel【4】算子等。(2)检测二阶导数的零交叉点。因为边缘处梯度的绝对值取得最大值,也就是灰度图像的拐点是边缘。(3)统计型方法。例如D.H.Marimont在文献【2】中通过假设检验来检测边缘,利用对二阶零交叉点的统计分析得到了图像中像素是边缘的概率。(4)小波多尺度边缘检测。20世纪末,随着小波分析的迅速发展,小波开始用于边缘检测。作为研究非平稳信号的利器,小波在边缘检测方面具有得天独厚的优势。除此之外,还有一些其他的方法,比如说模糊数学的方法、最近提出来的利用边缘流【5】的检测法、Hueckel算法、Frei和
6、Chen算法、Marr和Hildreth零交叉点算子、统计变点算法、边缘检测的Green函数方法、数学形态学方法等等。本文在分析传统边缘检测方法的同时,着重探讨小波变换在边缘检测的应用。13基于图像边缘检测的掌纹识别综述131掌纹识别简介基于图像处理的各种应用近年来得到了飞速的发展,而基于图像的掌纹识别【6】技术便是其应用的一个方面。掌纹是指手腕与手指之间的手掌表面的上的各种纹线。掌纹的形态由遗传基因控制,因为每个人的基因不相同,所以没有两个人的掌纹纹线会完全相同,即使是孪生同胞,纹线也只是相近,不可能完全一样。掌纹体现在图像上的特征主要包括纹线特征、点特征和纹理特征。(1)掌纹中最重要的特征
7、是纹线特征,这些纹线中最清晰的几条在人的一生中基本上不会发生变化,并且在低分辨率和低质量的图像中仍能够清晰的辨认。(2)点特征主要是指手掌的皮肤表面特征如掌纹突纹在局部形成的奇异点及纹形。由于其须在高质量和高分辨率的图像中提取,所以对图像的质量要求较高。(3)纹理特征,是指比纹线更短、更细的一些纹线,并且是毫无规律的分布在手掌上。由此可见,掌纹中包含的信息比起一枚指纹中的信息要丰富得多。利用掌纹图像中的纹线特征、点特征和纹理特征足以准确无误的确定一个人的身份。因此,从理论上讲,掌纹具有比指纹更好的分辨能力和更高的鉴别能力。除此之外,掌纹识别还是一种非侵犯性的识别方法,用户比较容易接受,同时,对
8、设备的要求也不是太高。由于以上的特点,掌纹识别成为了近几年发展特别快的一种生物识别技术,具有广阔的发展前景。132基于图像的掌纹识别算法到目前为止,研究人员已经在基于图像处理的掌纹识别领域做了大量的研究并取得了一定的成果。这里,对该领域的国内外研究现状做简单的介绍。现阶段,国内外主要有以下几种掌纹识别算法:(1)基于点特征和线特征的识别方法。它实际上是低对比度,高噪声背景下的图像的边缘检测,是掌纹识别中最直接的方法。点特征可以精确的描述掌纹图像,且鉴别能力高、鲁棒性【3】强。(2)基于掌纹纹理特性的识别方法。掌纹可以被认为是无规则但在个体间独一无二的一种纹理。目前有很多方法是针对纹理分析处理掌
9、纹图像的,如傅立叶变换、小波变换等方法。采用纹理分析方法处理掌纹图像可以很好的避免图像在空域中噪声的影响,简化图像预处理步骤。(3)基于子空间的掌纹识别方法。基于子空间的特征提取是指将掌纹图像经过映射变换或矩阵运算,实现从样本空间到特征子空间的转换。子空间法提取特征具有描述性强、计算代价小、易实现和可分性好等特点,但不足之处在于该方法下得到的特征一般是最佳描述但不是最佳分类特征,这不利于分类匹配。(4)分级融合的掌纹识别方法。由以上的算法可以看出,每种方法都各有优缺点,如果单纯的用一种则很难做到快速、精准的身份识别。于是,将多种算法综合起来的多特征融合的方法便成为研究的方向。这种融合可以体现在
10、特征级,也可以体现在匹配级。通过融合,识别的精度和速度都会有很大的提高。133掌纹识别技术展望随着信息技术和网络技术的高速发展,信息安全显示出前所未有的重要性。生物识别技术以其特有的稳定性、唯一性和方便性,得到越来越广泛的应用。基于图像的掌纹识别作为一项新兴的生物识别技术,因具有采样简单、图像信息丰富、用户接受程度高、不易伪造、受噪声干扰小等特点受到国内外研究人员的广泛关注。但是由于掌纹识别技术起步较晚,目前尚处于学习和借鉴其他生物特征识别技术的阶段。14本文的内容安排本文首先讨论了传统的图像分析和处理方法,针对它们在非稳定图像信号处理【7】方面的不足和单分辨率的缺陷,引出了小波理论并对其做了
11、一定的介绍。在研究和分析了现有的图像边缘检测方法后,针对可能漏检微弱边缘和边缘定位不够准确的不足,采用小波变换对图像进行边缘检测。为了更好的提取图像特征,首先对图像进行了预处理,使之达到灰度增强的目的。然后在基于小波多尺度边缘检测的方法上改进算法,采用三阶B-样条函数【8】作为相应的尺度函数。论文共分为六章,内容安排如下:第一章是绪论部分。主要阐述了课题背景和国内外的研究现状。简单介绍了边缘检测和掌纹识别的基本情况以及发展方向。第二章是传统的图像分析与处理方法。研究了传统的图像变换和处理的方法,主要对傅里叶变换和Gabor变换进行了研究和探讨,阐述了它们在图像分析和处理中的应用价值。第三章是小
12、波变换理论。本章重点讲述了小波变换的定义,介绍了几个典型的小波函数。之后深入研究了小波变换在图像处理领域的广泛应用。第四章是图像的边缘检测。本章首先研究了基于传统算子Sobel、Laplace等的边缘检测方法,对它们进行了理论分析,然后对各自的特点做出了比较和评价。最后系统的研究了Canny连续准则及其算法。第五章是小波多尺度边缘检测。根据连续小波变换的思想,提出用小波函数在多个尺度下提取图像特征。本章用改进的B-样条函数作为小波函数,对图像进行多级的边缘检测。第六章是总结与展望。即系统的总结了本文研究成果以及存在的不足,然后提出了后续研究工作的方向。 第二章 传统的图像分析和处理方法在数字图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基小波 变换 图像 边缘 检测 毕业设计
限制150内