圆锥曲线教案--【教学参考】.docx
《圆锥曲线教案--【教学参考】.docx》由会员分享,可在线阅读,更多相关《圆锥曲线教案--【教学参考】.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学教案设计1锥曲线一、教学内容分析圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象. 恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线 的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练 的解题。二、学生学习情况分析我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力 较差,推理能力较弱,使用数学语言的表达能力也略显不足。三、设计思想由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学 习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教 学,在轻松愉快的环境中发现、获取新
2、知,提高教学效率.四、教学目标1 .深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握 焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法; 能结合平面几何的基本知识求解圆锥曲线的方程。2 .通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通 过对问题的不断引申,精心设问,引导学生学习解题的一般方法。3 .借助多媒体辅助教学,激发学习数学的兴趣.五、教学重点与难点:教学重点1 .对圆锥曲线定义的理解2 .利用圆锥曲线的定义求“最值3 .定义法求轨迹方程教学难点:学生归纳综合能力的培养在高年段显得尤为重要。虽然教材中并没有规范 的计算法则,但作
3、为教师有必要让学生经历将计算方法归纳概括并通过语言表述 出来的过程,所以引导学生小结小数除法的计算法则,然后再由教师总结出规范 简洁的法则是必不可少的教学环节。作业应注意以下几方面错误:1、整数除以整数,商是小数的计算题,学生容易遗忘商的小数点。2、商中间有零的除法掌握情况不太好,需要及时弥补。对于极个别计算 确有困难的同学建议用低段带方格的作业本打草稿,这样便于他们检查是否除到 哪一位就将商写在那一位的上面。巧用圆锥曲线定义解题六、教学过程设计【设计思路】(一)开门见山,提出问题一上课,我就直截了当地给出例题L (1)已知A(-2, 0), B(2, 0)动点M满足|M已+ |MB|=2,则
4、点M 的轨迹是()。(A)椭圆(B)双曲线(C)线段(D)不存在(2)已知动点M(x, y)满足(xl)2(y2)2|3x4y|,则点M的轨迹是()。(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线【设计意图】定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和 研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定 义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清 楚的问题。为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精 心准备了两道练习题。【学情预设】估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定
5、义 可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案 是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折如果有学生提出: 可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形: (xl)2(y2)25这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子 |3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标 是,实轴长为,焦距为。以深化对概念的理解。(二)理解定义、解决问题例2 Q)已知动圆
6、A过定圆B: x2y26x70的圆心,且与定圆C: xy6x910相 内切,求AABC面积的最大值。(2)在(1)的条件下,给定点P(-2,2),求|PA|【设计意图】运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小) 值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类 问题。例2的设置就是为了方便学生的辨析一。【学情预设】根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的 可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习 题:!的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2Q),多数 学生应该能准确给出解答,
7、但是对于例2(2)这样相对比较陌生的问题,学生就无 从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来, 从而找到解决本题的突破口。(三)自主探究、深化认识如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会练习:设点Q是圆C: (xl)2225|AB|的最小值。3y225上动点,点A(l, 0) 是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。引申:若将点A移到圆C外,点M的轨迹会是什么?【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当 然,如果课堂上时间允许的话,可借助多媒体课件,引导学生对自己的结论进行验证。【知识链接】(一)圆锥
8、曲线的定义1 .圆锥曲线的第一定义2 .圆锥曲线的统一定义(二)圆锥曲线定义的应用举例x2y21.双曲线1的两焦点为Fl、F2, P为曲线上一点,若P到左焦点F1的距离 为 12,求 P169到右准线的距离。|PF1|PF2|2.P为等轴双曲线x2y2a2上一点,Fl、F2为两焦点,0为双曲线的中心,求的|P0|取值范围。3 .在抛物线y22Px上有一点A(4, m), A点到抛物线的焦点F的距离为5, 求抛物线的方程和点A的坐标。x2y24 .(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2, 2)是一个定 点,求259|MA| + |MF|的最小值。x2y211(2)已知A(,3
9、)为一定点,F为双曲线1的右焦点,M在双曲线右支 上移动,当92721|AM|MF|最小时,求M点的坐标。2x2(3)已知点P(-2, 3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM| + |FM| 最小。8x2y25 .已知A(4, 0), B(2, 2)是椭圆1内的点,M是椭圆上的动点,求|MA| + |MB|的最259小值与最大值。七、教学反思1 .本课将借助于”,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时, 运用多媒体课件辅助教学,节省了板演的时间,从而给学生留出更多的时间 自悟、自练、自查,充分发挥学生的主体作用,这充分显示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学参考 圆锥曲线 教案 教学 参考
限制150内