立体几何初步复习.docx
《立体几何初步复习.docx》由会员分享,可在线阅读,更多相关《立体几何初步复习.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、4、sin 30 =cos30 =sin 60 =cos60 =立体几何基础知识复习课编制人:马荣波审核人;于文娟 时间2013-12-10一、平面几何复习1、三角形的五心:三角形的重心是;三角形的垂心是;三角形的内心是;三角形 的外心 是;正三角形的中心是:2、已知正三角形的边长是a,则三角形一条边上的中线长为;中心 到边的距离是;中心到顶点的距离长为3、如图:sin/A=cos/A =/ C5、平行四边形中,对角线相等的是;对角线垂直的是二、棱柱1、满足条件 的棱柱是直棱柱;满足条件 的棱柱是正棱柱,注意:“正”中含“直”2、特殊的四棱柱:满足条件 的棱柱是平行六面体;满足条件 的平行六面
2、体是直平行六面体;满足条件 的直平行六面体是长方体;满足条件 的长方体是正四棱柱;满足条件 正四棱柱是正方体。3、长方体的长宽高分别为a,b,c,则对角线长为思考题:下列命题若棱柱侧面中有两个矩形,则该棱柱为直棱柱;若棱柱侧面中有两个相邻面是矩形,则该棱柱为直棱柱;底面是正方形的棱柱是正棱柱底面是正方形的棱锥是正棱锥棱台的各条侧棱相交于一点其中正确的命题序号为三、正棱锥、正棱台如图:在正四棱锥中,由侧棱、高、底面对角形一半围成的直角三角形是:由斜高、高、底边一半构成的直角三角形为指出正四棱台中的直角三角形四、旋转体:1、解决旋转体的问题,一般是画轴截面2、画出一个圆柱、一个圆锥,并画出他们的侧
3、面展开图,结合侧面展开图给出他们的 侧面积计算公式,并画出他们的三视图心的连线d之间有什么3、球:球半径R,不过球心的截面圆的半径厂,球心与截面圆的关系?练习:球面上三点A B、C,若45=18,员=24, 4?=30,且球心到所在平面的距 离等于球半径的一半,则这个球的表面积为()400B. 300 n C. 1200nD. 1600n4、若长方体(包括正方体)外接球的球的球心是对角线的中点,对角线的长是球的直径。 练习:一直角三角形ABC的两条直角边边长分别为3和4,将该三角形以斜边所在直线为 轴旋转一周,所得几何体的体积为.五、三视图1、已知下图是正三棱柱的直观图,回出他们的三视图俯视图练习:若某空间几何体的三视图如图所示,则该几何体的体积是练习:已知正方体的棱长为a,求三棱锥BDDiAi的体积AB六、平面的性质及推论:回顾4个性质及三个推论,说明他们的用途七、直线、平面的平行与垂直路线图(依图熟记定理)平行垂直B.如图,在直三棱柱ABCa4G中,44 = AG, D, E分别是棱BC, CG上的点(点。不同于点C), 且AQ_LOE,尸为5c的中点.求证:(1)平面AD_L平面5CC4;(2)直线从方平面ADE.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 初步 复习
限制150内