五年级下册奥数教程(共34页).doc
《五年级下册奥数教程(共34页).doc》由会员分享,可在线阅读,更多相关《五年级下册奥数教程(共34页).doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上前 言在琳琅满目的教辅类图书前孩子的心声:奥数真难,大人们为什么总要我们学习奥数呢?家长的心声:太难的奥数,让孩子越来越没自信学习数学了。教师的心声:现行的奥数比课本难多了,若有一套配合课本进度,并能提高学生抽象思维能力的奥数书,将能真正作为的延伸。针对以上种种心声,将此作为课题来研究,在多所名校和社会信誉度较高的办学单位试行的基础生,推出了这套同步奥数培优,内容力求体现:配套现行教材以北师大版内容为知识体系,做到在已有知识基础上的拓展,重视知识的螺旋上升,在和教材同步的同时,培养学生的抽象思维能力。【适当加入一些同学们感兴趣的内容】。注重素质提高学好数学的前提是要有
2、兴趣,这是编写此套丛书的出发点。为了更全面综合地提高学生的数学素质,此书适合大多数学生的学习与使用。强化数学的学习是思维的学习。此套丛书在章节安排上,重视对学生系统思维的训练,能结合学生学习的特点,相对形成知识编排上的系统性。即能以知识为章,以知识点为节,由浅入深,层层深入,使学生的认知相对完整。本书将本着自学能会,教师能辅导、家长能参考的宗旨,全心全意为莘莘学子、为酷爱奥数的同学们而编,望你们用心学习,对以后的学习有所帮助,由于编写时间仓促,书中难免有些不妥之处,敬请广大同学们在使用过程中批评指正,以使本书更加完善。 五年级奥数编写组 目 录第一讲 分数乘法(乘法中的简算) 2练习卷. 5第
3、二讲 长方体和正方体(巧算表面积) 6练习卷. 10第三讲 分数除法应用题 11练习卷. 15第四讲 长方体和正方体(巧算体积) 16练习卷 20第五讲 较复杂的分数应用题(寻找不变量) 21练习卷. 24第六讲 百分数(浓度问题) 25练习卷. 28综合演习(1) 29综合演习(2) 31第一讲 分数乘法例题讲学 例1 (1)19 (2) 27【思路点拨】 观察这两道题中数的特点,第(1)题中的比1少,可以把看作1-,然后和19相乘,利用乘法分配律使计算简便;同样,第(2)题中27与中的分母26相差1,可以把27看作(26+1),然后和相乘,再运用乘法分配律使计算简便。技巧 把哪个数拆分是解
4、决问题的关键,或拆成与1有关的两数之差或和;或者把一个数拆分成与分数分母相关的和或差,最后用乘法分配律使计算简便。同步精练1. 35 2. 103. 8 4. 1265. 17 6. 例2 【思路点拨】 仔细观察分子、分母中各数的特点,我们就会发现,分子1999+20001998=1999+2000(1999-1)=1999+20001999-2000=20001999-1,这样就把分子转化成与分母完全相同的式子,结果自然就好计算了,试试吧!技巧 解决稍复杂的分数乘法问题时,不要慌张,要仔细观察数的特点,根据数的特点一般都能化成分子、分母能约分的情况,然后使计算简便。同步精练1. 2. 例3
5、【思路点拨】 在这道题中,每个分数的分子都是1,分母是两个连续的自然数的乘积。看下面规律:=1-, =-, =-, 把每个分数都拆写成两个分数的差,使部分分数前后互相抵消,使计算简便。技巧 做这类题目的关键是把一个分数式子如何进行拆分,并把拆分的结果统一前后抵消,从而使计算简便。同步精练 1. + 2. + 3. 练 习 卷1. 27 2. 3. 4. 5. 6. 7 第二讲 长方体和正方体(巧算表面积)例题讲学 例1 两个棱长是2厘米的小正方体可以拼成一个长方体,这个长方体的表面积是多少? 【思路点拨】 先根据题意画图: 从图上可以清楚地看出:两个正方体原先各有6个正方形的面,当把它们拼起来
6、时就少了2个正方形的面。这时,求长方体的表面积只相当于求(12-2=)10个正方形的面积;还可以这样想:当两个正方体拼成一个长方体时,求长方体的表面积,我们可以先分别求出这个长方体的长、宽、高,再求出它的表面积。技巧 1.当物体拼合时表面积之和少了,可以根据用原来的面去掉减少了的面,从而求出拼合后物体的面积数量,然后求出表面积。2.还可以求出拼成后大物体的长、宽、高,再根据物体形状直接求表面积。同步精练1. 把两个棱长是3厘米的小正方体拼成一个长方体,这个长方体的表面积是多少? 2把底面积是36平方厘米的两个正方体木块拼成一个长方体,长方体的表面积是多少?3把三个完全相同的正方体拼成一个长方体
7、,这个长方体的表面积是350平方厘米。每个正方体的表面积是多少平方厘米? 例2 把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体表面积之和最大,这时表面积之和是多少平方厘米? 【思路点拨】把长方体截成两个长方体后,两个长方体表面积之和等于原长方体表面积再加上两个截面的面积。这个长方体几个面中,上、下面的面积最大,所以要看哪个面的面积最大,于是本题就按平行于上、下面的方式去截,才使表面积之和最大。技巧 长方体截成两个长方体有三种截法,如图: 每一种截法都会产生不同的面,所以判断怎么样截是解决问题的关键。同步精练1. 把一个长10厘米、宽8厘米、高6厘米的长方体木
8、料截成两个完全一样的长方体,怎样截才能使截成之后,得到两个长方体的表面积之和最大?最大是多少?2. 把两个长3厘米、宽2厘米、高1厘米的长方体拼成一个表面积最大的长方体,这个长方体的表面积是多少平方厘米?3把两个长6厘米、宽4厘米、高3厘米的长方体拼成一个大长方体,这个大长方体的表面积的最大值与最小值相差多少?例3 求出下面立体图形的表面积。(单位:厘米)6 【思路点拨】 从图上看出,这个图形是由一个长方体和一个正方体组成的,求它的表面积时,可以把正方体的右侧面平移到长方体上,这个立体图形的表面积就可以用一个完整的长方体表面积加上一个正方体的上、下、前、后四个面的面积。4810 44同步精练1
9、. 在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(如图),求这个立体图形的表面积。 2.求下列组合图形的表面积。(三个正方体的棱长从上往下依次是1厘米、2厘米、4厘米) 3. 18个棱长为2厘米的小正方体堆成如下图的形状,求它的表面积。 例4 如图,从右面这个图形的顶点处挖去一个小正方体,那么所得物体的表面积现在是多少平方厘米?(每个小正方体的棱长为1厘米) 【思路点拨】从顶点处挖掉一个小正方体后,原来的小正方体露在外面的3个面就少了,但这时又有3个同样大小的面露了出来,所以表面积是没有大小变化的。 同步精练 1.如上图,如果从小正方体的上面的中间挖去一个小正方体,那么此时正方体的
10、表面积是多少了呢? 2.如下图,在一个棱长为6厘米的大正方体的6个面上分别挖去一个小正方体,现在剩下图形的表面积是多少? 2. 从一个长方体的上面往下挖通,求现在物体的表面积是多少。(原长方体的长、宽、高分别是10厘米、8厘米、12厘米,挖去的图形为长、宽都是4厘米的小长方体。)练 习 卷1.长方体的底面积是12平方厘米,宽2厘米,高和宽相等,表面积是( )平方厘米,底面周长是( )厘米。2.一个正方体的底面积是25平方分米,它的表面积是( )平方分米。3.一个长方体的长、宽、高分别是a米、b米、h米,如果高增加4米后,新的长方体表面积比原来增加了( )平方米。4.把一根长2.4米,宽0.8米
11、,高0.4米的木料锯成大小相等的2段,它的表面积最少增加多少平方米?5.将两本长25厘米、宽20厘米、厚5厘米的书包成一包,怎样才能节约包装纸?请画图表示,并求出需要多少包装纸?6.求下面立体图形的表面积。(单位:厘米) 614752037 7.把一个棱长为3厘米的正方体外面全部涂上红色,再把它切成棱长为1厘米的小正方体,共切成多少块?在这些小正方体中:三面涂红的有多少块?3cm两面涂红的有多少块?3cm3cm一涂红的有多少块?任何一面都没有涂红的有多少块?第三讲 分数除法应用题例题讲学210个240个 例1 加工一批零件,第一天加工210个,第二天加工240个,这两天共加工了这批零件的。这批
12、零件共有多少个?【思路点拨】总个数的?个 技巧根据题意,把这批零件的总数看作单位“1”,两天共加工210+240=450(个),450正好占这批零件总数的。求单位“1”的量用除法计算。 求单位“1”时,用除法,可以用“具体的量它所对应的分率”。同步精练1.超市运进水果,第一批运进320千克,第二批运进400千克,这两批运进的水果重量占超市现在所有水果的,超市现在一共有水果多少千克? 2.一条铁路,修完900千米后,剩余部分比全长的少300千米,这条铁路全长多少千米? 3.修路队修一条路,第一天修了全长的,第二天修了1000米。这时已修的米数占全长的。这条路全长多少千米?例2 李添三天看完一本书
13、,第一天看了这本书的,第二天看了24页,还剩下全书的未看。这本书共有多少页?全书的全书的【思路点拨】 根据题意画线段图,帮助理解题意,分析数量关系。?页24页 技巧这道题中有一个具体数量“第二天看了24页”,所以这是解决问题的突破口,要找出24页所对应的分率,即总页数-第一天看的-剩下的=1-=,用24除以它所对应的分率,即可求出全书页数。 从具体数量出发,找出具体数量的对应分率,是解决问题的关键之所在。同步精练1.电脑公司要修一批电脑,已经修了这批电脑的,再修24台就正好修了这批电脑的一半。这批电脑有多少台?2.一筐萝卜卖掉以后,又卖出6千克,这时卖出的正好是剩下的。这筐萝卜原有多少千克?3
14、.筑路队三天修好一条马路,第一天修了全长的,第二天修了全长的,第一天比第二天少修90米,这条马路全长多少米?例3 一捆电线,第一次用去全长的,第二次用去余下的,这时还剩下108米。这捆电线共长多少米?【思路点拨】 这道题中已知的具体数量是“还剩下108米,”所以要找出它所对应的分率还剩下几分之几。 第一次用去全长的,第二次用去余下的,而余下的即是(1-)的=,108米对应的分率是(1-)=,所以用108除以求出这捆电线的总长度。技巧 问题的关键还是找题中具体数量所对应的分率。谨记:“具体量对应分率=单位1”同步精练1.工厂进了一批原料,第一个星期用去总数的,第二个星期用去总数的,这时用去的比剩
15、下的多31吨,这批原料共有多少吨?2.牛师傅计划做一批零件,第一天做了计划的,第二天又做了余下的,这时还剩42个零件没做。牛师傅计划做多少个零件?3.一批木料,先用去总数的,又用去剩下的,这时用去的比剩下的多10立方米,这批木料共有多少立方米?例4 有一堆苹果,吃了后又买来324个,这时这堆苹果的个数比原来多了。原来这堆苹果有多少个? 【思路点拨】 这道题中仅有一个具体数量“又买来324个”所以解决问题的关键即是找准324的对应分率,也就是找出“又买来的324个苹果占几分之几”根据已知条件吃了,还剩下,而买来324个之后,比原来多了,也就是占原来的,所以买来的324个苹果就占(-=),所以用3
16、24除以对应的分率就可以求出单位“1”,即原来的苹果总数了。【思路点拨】 吃了后总数少了,而当买来324个苹果之后,却比原来的总数还多了,这说明这324个苹果不但把吃了的补上了,而且还多出来了,所以324个苹果就占(+=),故而用324即可以求出单位“1”了。同步精练1.食堂原有一批大米,吃了后,有运进170千克,这时大米的总重量比原来还多了,原来食堂有大米多少千克?2.玩具店开业当天卖出玩具,第二天又新进150件新玩具,这时玩具总数比原来却少了。玩具店原来有玩具多少件?练 习 卷1.某家具店要生产一批沙发,第一周生产了64套,第二周生产了86套,两周共生产了这批沙发总数的。家具厂还要生产多少
17、套沙发?2.服装厂第一车间有工人150人,第二车间的工人数是第一车间的,两个车间的人数正好是全厂工人总数的,全厂有工人多少人?3.一根钢筋截去8米后,所剩部分比原长的还多2米。这根钢筋原长多少米?4.学校植树,第一天完成了计划的,第二天完成了计划的,第三天植树55棵,结果超过计划的,学校计划植树多少棵?5.欣欣原有一些糖果,吃了后,妈妈又给她买来14颗,这时的糖果总数是原来的。欣欣原来有糖果多少颗?第四讲 长方体和正方体(巧算体积)例题讲学 例1 把一块棱长为6分米的正方体钢坯,熔铸成横截面是9平方分米的长方体钢材。铸成的钢材有多长?技巧【思路点拨】 把正方体钢坯熔铸成长方体后,虽说形状变了,
18、可体积没有变,正方体钢坯的体积就是长方体钢材的体积。所以先求出正方体的体积,也就是长方体的体积。用体积除以长方体钢材的横截面面积,就可以求出长方体钢材的长度了。抓住体积不变这个隐藏的量,熔铸前体积等于熔铸后的体积,再根据“体积横截面积=长”这个公式,从而轻松解决问题。 同步精练1.把一块棱长为0.8米的正方体钢坯,锻造成底面积是0.16平方米的长方体钢材,锻造成的钢材有多高?2.把一个棱长10厘米的正方体橡皮泥,重新捏成一个高和宽都是2厘米的长方体,这个长方体的长是多少分米? 3.棱长为6分米的正方体容器内有4分米高的水,把这些水全部倒入一个长4分米、宽3分米、高15分米的长方体水箱内,这时水
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 教程 34
限制150内