二次函数综合性培优训练题及答案(共15页).doc
《二次函数综合性培优训练题及答案(共15页).doc》由会员分享,可在线阅读,更多相关《二次函数综合性培优训练题及答案(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数综合性培优训练题及答案 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线 与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上. (1)求的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.EBACP图1OxyD2、如
2、图2,已知二次函数的图像经过点A和 点B(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图像上(其中m0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离xyO3911AB图23、如图3,已知抛物线经过O(0,0),A(4,0),B(3,)三点,连结AB,过点B作BC轴交该抛物线于点C. (1) 求这条抛物线的函数关系式.(2) 两个动点P、Q分别从O、A两点同时出发,以每秒1个单位长度的速度运动. 其中,点P沿着线段0A向A点运动,点Q沿着折线ABC的路线向C点运动. 设这两个动点运动的时间为(秒) (04),PQA的面积记
3、为S. 求S与的函数关系式; 当为何值时,S有最大值,最大值是多少?并指出此时PQA的形状; 是否存在这样的值,使得PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由. PBACOQ图3-30-1-21234S(万元)图41 2 3 4 5 6 t(月)4、某公司推出了一种高效环保型除草剂,年初上市后,公司经历了从亏损到盈利的过程. 图4的二次函数图象(部分)刻车了该公司年初以来累积利润S(万元)与时间(月)之间的关系(即前个月的利润总和S与之间的关系).根据图象提供信息,解答下列问题:(1)公司从第几个月末开始扭亏为盈;(2)累积利润S与时间之间的函数关系式;(
4、3)求截止到几月末公司累积利润可达30万元;(4)求第8个月公司所获利是多少元?5、如图5,已知抛物线的顶点坐标为E(1,0),与轴的交点坐标为(0,1).(1)求该抛物线的函数关系式.(2)A、B是轴上两个动点,且A、B间的距离为AB=4,A在B的左边,过A作AD轴交抛物线于D,过B作BC轴交抛物线于C. 设A点的坐标为(,0),四边形ABCD的面积为S. 求S与之间的函数关系式. 求四边形ABCD的最小面积,此时四边形ABCD是什么四边形? 当四边形ABCD面积最小时,在对角线BD上是否存在这样的点P,使得PAE的周长最小,若存在,请求出点P的坐标及这时PAE的周长;若不存在,说明理由.E
5、O1备用图D图5EBACO16)如图6,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2。(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由。图67、如图7,直线与轴交于点,与轴交于点,已知二次函数的图象经过点、和点.(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为,求四边形的面积;(3
6、)有两动点、同时从点出发,其中点以每秒个单位长度的速度沿折线 按的路线运动,点以每秒个单位长度的速度沿折线按的路线运动,当、两点相遇时,它们都停止运动.设、同时从点出发秒时,的面积为S .请问、两点在运动过程中,是否存在,若存在,请求出此时的值;若不存在,请说明理由;请求出S关于的函数关系式,并写出自变量的取值范围;设是中函数S的最大值,那么 = . 图78、如图8,抛物线与轴交于A(-1,0),B(3,0) 两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标;(3)设(1)中抛物线交y 轴于C点,
7、在该抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.图89、如图9、已知抛物线y=x2+(2n-1)x+n2-1 (n为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作ABx轴于B,DCx轴于C.当BC=1时,求矩形ABCD的周长;试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.x经y经0经1经2经3经4经-1经-1经-2经-3
8、经1经2经ABCD图910、如图10,已知点A(0,8),在抛物线上,以A为顶点的四边形ABCD是平行四边形,且项点B,C,D在抛物线上,ADx轴,点D在第一象限.(1)求BC的长;(2)若点P是线段CD上一动点,当点P运动到何位置时,DAP的面积是7.(3)连结AC,E为AC上一动点,当点E运动到何位置时,直线OE将o ABCD分成面积相等的两部分?并求此时E点的坐标及直线OE的函数关系式.ABCDOyx图1011、一座拱桥的截面轮廓为抛物线型(如图11-1),拱高6米,跨度20米,相邻两支柱间的距离均为5米.(1)将抛物线放在所给的直角坐标系中(如图11-2所示),其表达式是的形式. 请根
9、据所给的数据求出的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间DE是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2米、高3米的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.MN10米20米6米5米图11-1图11-2DEOxABCy二次函数综合题训练题型集合答案1、 (1) 点A(3,4)在直线y=x+m上, 4=3+m. (1分) m=1. (2分) 设所求二次函数的关系式为y=a(x-1)2. (3分) 点A(3,4)在二次函数y=a(x-1)2的图象上, 4=a(3-1)2, a=1. (4分) 所求二次函数的关系式为y=(x-1)2. 即y=x2-2x
10、+1. (5分)(2) 设P、E两点的纵坐标分别为yP和yE . PE=h=yP-yE (6分) =(x+1)-(x2-2x+1) (7分) =-x2+3x. (8分) 即h=-x2+3x (0x3). (9分)(3) 存在. (10分)解法1:要使四边形DCEP是平行四边形,必需有PE=DC. (11分) 点D在直线y=x+1上, 点D的坐标为(1,2), -x2+3x=2 .即x2-3x+2=0 . (12分)解之,得 x1=2,x2=1 (不合题意,舍去) (13分) 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. (14分)解法2:要使四边形DCEP是平行四边形,必需有BPC
11、E. (11分)设直线CE的函数关系式为y=x+b. 直线CE 经过点C(1,0), 0=1+b, b=-1 . 直线CE的函数关系式为y=x-1 . 得x2-3x+2=0. (12分)解之,得 x1=2,x2=1 (不合题意,舍去) (13分) 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. (14分)2、解:(1)将x=-1,y=-1;x=3,y=-9分别代入得解得 二次函数的表达式为 (2)对称轴为;顶点坐标为(2,-10)(3)将(m,m)代入,得 ,解得m0,不合题意,舍去m=6点P与点Q关于对称轴对称,点Q到x轴的距离为63、(1) 抛物线经过O(0,0),A(4,0),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 综合性 训练 答案 15
限制150内