《解线性方程组的直接方法优秀PPT.ppt》由会员分享,可在线阅读,更多相关《解线性方程组的直接方法优秀PPT.ppt(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第5 5章章 解线性方程组的干脆方法解线性方程组的干脆方法15.1 5.1 引言与预备学问引言与预备学问 5.1.1 5.1.1 引言引言 线性方程组的数值解法一般有两类:1.干脆法 经过有限步算术运算,可求得方程组精确解的方法(若计算过程中没有舍入误差).但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解.2 2.迭代法 是用某种极限过程去逐步靠近线性方程组精确解的方法.3 5.1.2 5.1.2 向量和矩阵向量和矩阵 用 表示全部 实矩阵的向量空间,表示全部 复矩阵的向量空间.这种实数排成的矩形表,称为 行 列矩阵.称为 维列向量.4其中 为 的第 列.其中 为
2、的第 行.也可写成行向量的形式 写成列向量的形式5 (5)单位矩阵 矩阵的基本运算:(1)矩阵加法 (2)矩阵与标量的乘法 (3)矩阵与矩阵乘法 (4)转置矩阵6 (6)非奇异矩阵 设则称 是 如果 存在,则称 为非奇异矩阵.如果 均为非奇异矩阵,其中 如果的逆矩阵,记为且则 (7)矩阵的行列式 设则 的行列式可按任一行(或列)展开,7其中 为 的代数余子式,行列式性质:即 的余子式.为元素8 5.1.3 5.1.3 特殊矩阵特殊矩阵 设 (1)对角矩阵 (2)三对角矩阵 (3)上三角矩阵 (4)上海森伯格(Hessenberg)阵 (5)对称矩阵 9 (6)埃尔米特矩阵 (7)对称正定矩阵
3、(8)正交矩阵 (9)酉矩阵 (10)初等置换阵 由单位矩阵 交换第 行与第 行(或交换第 列与第 列),得到的矩阵记为 ,且 10 (11)置换阵 定理定理1 1设 ,(1)对任何 方程组 有唯一解.(为交换 第 行与第 行得到的矩阵);(为交换 第 列与第 列得到的矩阵);由初等置换阵的乘积得到的矩阵.则下述命题等价:(2)齐次方程组 只有唯一解 .(4)存在.(5)的秩(3)11 定理定理2 2设 为对称正定阵,则 (1)为非奇异矩阵,且 亦是对称正定阵.(2)记 为 的顺序主子阵,则 亦是对称正定矩阵,其中 (3)的特征值 (4)的顺序主子式都大于零,即 12 定理定理3 3设 为对称
4、矩阵.或 的特征值则 为 定理定理4 4(Jordan标准型)设 为 阶矩阵,则存在一个非奇异矩阵 使得 如果对称正定阵.13其中 为若当(Jordan)块.(1)当 的若当标准型中所有若当块 均为一阶时,此标准型变成对角矩阵.14 (2)如果 的特征值各不相同,则其若当标准型必为对角阵155.2 5.2 高斯消去法高斯消去法16 5.2.1 5.2.1 高斯消去法高斯消去法 设有线性方程组(2.1)或写为矩阵形式 17简记为 例例1 1 解解消去(2.4)中的未知数 得到将方程(2.2)乘上 加到方程(2.4)上去,第2步.用消去法解方程组 第1步.将方程(2.3)加到方程(2.5)上去,消
5、去方程18(2.5)中的未知数得到与原方程组等价的三角形方程组 明显,方程组(2.6)是简洁求解的,解为 上述过程相当于 19其中用 表示矩阵的第 行.由此看出,用消去法解方程组的基本思想是用逐次消去未知数的方法把原方程组 化为与其等价的三角形方程组,而求解三角形方程组可用回代的方法.上述过程就是用行的初等变换将原方程组系数矩阵化为简洁形式(上三角矩阵),从而将求解原方程组(2.1)的问题转化为求解简洁方程组的问题.20 或者说,对系数矩阵 施行一些左变换(用一些简单矩阵)将其约化为上三角矩阵.下面探讨求解一般线性方程组的高斯消去法.将(2.1)记为 其中 (1)第1步 设 首先计算乘数 用
6、乘(2.1)的第一个方程,加到第 个方程上,消去(2.1)的从第二个方程到第 个方程中21的未知数 得到与(2.1)等价的方程组(2.7)简记为 其中 的元素计算公式为 22 (2)第 次消元 设上述第1步,第 步消元过程计算已经完成,(2.8)即已计算好与(2.1)等价的方程组简记为 23 设 计算乘数 加到第 个方程用 乘(2.8)的第 个方程,消去从第 个方程到第 个方程中的未知数 得到与 元素的计算公式为 显然 中从第1行到第 行与 相同.(2.1)等价的方程组 24 (3)继续上述过程,且设直到完成第 步消元计算.最后得到与原方程组等价的简单方程组 其中 为上梯形.特别当 时,与原方
7、程组等价的方程组为 即(2.10)25 如果 是非奇异矩阵,且由(2.1)约化为(2.10)的过程称为消元过程.求解三角形方程组(2.10),得到求解公式(2.11)(2.10)的求解过程(2.11)称为回代.如果 由于 为非奇异矩阵,所以 的第一列一定有元素不等于零.26 例如 于是交换两行元素(即 ),将 调到(1,1)位置,然后进行消元计算,这时 右下角矩阵为 阶非奇异矩阵.接着这过程,高斯消去法照样可进行计算.27 定理定理5 5设 其中 (1)如果将 约化为等价的三角形方程组(2.10),且计算公式为:则可通过高斯消去法 (a)消元计算 28 (b)回代计算 (2)如果 为非奇异矩阵
8、,则可通过高斯消去法(及交换两行的初等变换)将方程组 约化为(2.10).29 算法算法1 1(高斯算法)本算法用高斯方法将 约化为上梯形,且 覆盖 ,乘数 覆盖 .对于 (1)如果 则计算停止 (2)对于 (a)(b)对于 设假如30上三角阵,算法1第 步需要作 次除法,次乘法,因此,本算法(从第1步到第 步消元计算总的计算量)当 时,总共大约需要 次乘法运算.数 称为约化的主元素主元素.算法算法2 2(回代算法)设 其中 为非奇异本算法计算 的解.对于 (1)大约需要 次乘法(对相当大的 ).31 (2)对于 (3)这个算法需要 乘除法运算.高斯消去法对于某些简洁的矩阵可能会失败,由此,须
9、要对算法1进行修改,例如 在什么条件下才能保证 首先需要研究原来的矩阵32 定理定理6 6约化的主元素 的充要条件是矩阵 的顺序主子式即(2.12)证明证明 显然,当 时,定理6成立.现设定理6充分性对 是成立的,求证定理6充分性对 亦成立.首先利用归纳法证明定理6的充分性.33 设可用高斯消去法将 约化到 ,且有 于是由归纳法假设有即 34(2.13)由设定理6充分性对 亦成立.显然,由假设利用(2.13)式,则有利用(2.13)式亦可推出 35 推论推论如果 的顺序主子式则 36于是对(2.1)施行第一次消元后化为(2.7),5.2.2 5.2.2 矩阵的三角分解矩阵的三角分解 下面借助矩
10、阵理论进一步对消去法作些分析,从而建立高斯消去法与矩阵因式分解的关系.设(2.1)的系数矩阵 的各顺序主子式均不为零.由于对 施行行的初等变换相当于用初等矩阵左乘 ,这时 化为化为 ,即 37其中 一般第 步消元,化为 ,化为 ,相当于 其中 38重复这过程,最终得到(2.14)记上三角矩阵 为 ,由(2.14)得到 39其中 为单位下三角矩阵.这就是说,高斯消去法实质上产生了一个将 分解为两个三角形矩阵相乘的因式分解,于是得到如下重要定理,它在解方程组的直接法中起着重要作用.40 定理定理7 7设 为 阶矩阵,如果 的顺序主子式则 可分解为一个单位下三角矩阵 和一个上三角矩阵 的乘积,证明证
11、明现在在 为非奇异矩阵的假定下证明唯一性,设 其中 为单位下三角矩阵,为上三角矩阵.(矩阵的LU分解)且这种分解是唯一的.依据以上高斯消去法的矩阵分析,存在性已得证,41上式右边为上三角矩阵,左边为单位下三角矩阵,例例2 2 由高斯消去法,由于 存在,故 从而上式两边都必需等于单位矩阵,唯一性得证.故对于例1,系数矩阵 故 4243 例例3 3 5.3 5.3 高斯主元素消去法高斯主元素消去法 由高斯消去法知道,在消元过程中可能出现 即使主元素 但很小时,用其作除数,会导致其他元素数量级的严重增长和舍入误差的扩散,最后也使得计算解不可靠.这时消去法将无法进行;求解方程组 44用4位浮点数进行计
12、算.精确解舍入到4位有效数字为 解法解法1 1用高斯消去法 45计算解为 明显计算解是一个很坏的结果,不能作为方程组的近似解.其缘由是我们在消元计算时用了小主元 0.001,使得约化后的方程组元素数量级大大增长,经再舍入使得在计算(3,3)元素时发生了严峻的相消状况,因此经消元后得到的三角形方程组就不精确了.46 解法解法2 2 交换行,避开确定值小的主元作除数.47得计算解为 这个例子告诉我们,在采用高斯消去法解方程组时,小主元可能产生麻烦,故应避免采用绝对值小的主元素 对一般矩阵来说,最好每一步选取系数矩阵(或消元后的低阶矩阵)中确定值最大的元素作为主元素,以使高斯消去法具有较好的数值稳定
13、性.这就是全主元素消去法.在选主元时要花费较多机器时间,目前主要运用的是列主元消去法.48 本节主要介绍列主元消去法,并假定(2.1)的 为非奇异的.49 5.3.1 5.3.1 列主元素消去法列主元素消去法 设方程组(2.1)的增广矩阵为 首先在 的第一列中选取绝对值最大的元素作为主元素,例如 50重复上述过程,设已完成第 步的选主元素,交换两行然后交换 的第1行与第 行,经第1次消元计算得 约化为及消元计算,51其中 的元素仍记为 ,的元素仍记为 .第 步选主元素(在 右下角方阵的第1列内选),即确定 ,使 交换 第 行与 行的元素,再进行消元计算,最终将原方程组化为 52回代求解 算法算法3 3(列主元素消去法)设 .本算法用具有行交换的列主元素消去法,消元结果冲掉 ,乘数 冲掉 ,计算解 冲掉常数项行列式存放在 中.1.53 2.对于 (1)按列选主元 (2)如果 ,则计算停止 (3)如果 则转(4)交换行:(4)消元计算 对于 54 (a)(b)对于 (c)(5)3.如果 ,则计算停止 4.回代求解 55 5.例3的解法2用的就是列主元素消去法.列主元素消去法也可用矩阵运算描述:(3.1)其中 的元素满足是初等置换阵.56
限制150内