《电磁场与微波技术(第2版)习题答案.docx》由会员分享,可在线阅读,更多相关《电磁场与微波技术(第2版)习题答案.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章1.3证:AB = 9 4 + 1 ( - 6) + ( - 6) 5 = 0 A和 B相互垂直A B =0 A和 B相互平行1.111 A = divA= Ax+ Ay + Azxyz= 2x +2x2 y +72x2 y2z2(2)由高斯散度定理有 Ads = Adt= 0.5dz0.5dy0.5(2x +2x2 y +72x2 y2z2 )dzt-0.5s= 124-0.5-0.51.181 由于闭合路径在 xoy 平面内, 故有:A dl = (e x + e x2 + e y2 z)(e dx + exyzxydy) = xdx + x2dy A dl = 8 (2)由于S在X
2、OY面内, A ds = (ex (A ds) = 8s所以,定理成立。1.21(1) 由梯度公式2 yz + e 2x)(e dxdy) = 2xdxdyzxu = exu + exyu + eyzu|z (2,1,3)= 4e +10e+ exyz方向导数最大值为 42+102117+12=117方向: 1 4e +10e+ e xyz2最小值为0, 与梯度垂直1.26证明 u= 0 A = 0书上 p10 1.25其次章2.14r =q3V = erp a3wr sinqJ = r V = er3qwr sinq 4p a32.3用圆柱坐标系进展求解场点坐标为 P(0,0,z). 线电荷
3、元 rldl ” = ra dj”lR = Er R = ez z - ea a得Er = ez z - ea a , r =z 2 + a 2z 2 + a 2可以视为点电荷,其到场点的距离矢量E = 2pez z - ea ar a dj所以P点的电场强度为ea =ex cos j ” + ey sin j ” 2p ea dj” = 00 E = er a zl3”0 z 2+ a 224pe 0lz3z 2 + a 222e 02.8 E d s = 4p r 2sEq = r (b2 - r 2(1)r b时E (r )p=pb2 r 3)4r 2 dr4(- r 5 )035由高斯
4、定理有 E d s = Eqse 04pb2 r 3r 5即4p r 2 E (r )=e 0 (3- 5 ) E (r )=1e 0( b2 r3- r 3 )5 E d s = 4p r 2sEq = b (b 2 - r 22rb时0由高斯定理有E (r )4p r 2 dr = 8p b515E (r )=Eq4p r 2e 0=2b5 15r 2e 02.11当 r1b 则, E=Eb-Ea Eb ds= qe0 Eb2pr1 l =p b 2 l re Eb=b 2 r eer 120,同理: Ea=a 2 r eer 2r12r200rb 2 ea 2 e( E = Eb - E
5、a=2 e0(2)r 1-r1r 2 )r2对于 r1b 且在空腔外,E=Eb-Ea Eb ds= q,e0 Eb2pr1 l =p r12 l r0er 1Eb= r1 r e2 e0r 2而 Ea= a 2 r e2 er20ra 2 e2 e E =( r1e- -r 10r 2 )r2(3) r1 b且在空腔内E=Eb-Ea E ds= q,er1 r e0 Eb=r 1 , Ea=e20r 2 r eer 220 E = Eb - Ea=r1 r eer 1-20r 2 r eer 220=r( r1e 2 er 10- r 2 e)r 22.14(1)r a时 E= - = -A
6、r-a2 cosj r=e (- A - a2 A)cos j + e( A - a2 A)sin jrr2jr2(2)圆柱是由导体制成的外表电荷 rs= e f0 a= -2e0A cosj2.20能求出边界处即 z=0 处的 E2 依据 D 的法向量重量连续 e(5 + z) = eEr1r 2Z E= 10Z32.28(1) 设内外导体单位长度带电量分别为+r和-r ,ee利用高斯定理可以求得导体介质的电场为:ru = b E dl = rln ba2pleaE = elr2per得到r= 2peu, E = eulln bar r ln ba J = 6 E = er(2)6ur ln
7、 basg = I = Jds = 6 eu2pdds =uuusrr ln bln baa2.34(1) 取圆柱坐标系,假设为磁场,依据磁场连续性方程,B有=0B=er m0ar B = m0a 0,所以不是磁场2取直角坐标 B=0,所以是磁场。 J = H = 0第三章3.21Eyjwux1(2) H = - E = -e jwuz= -ezp1Eme jkx- j 2y= -ez4 10-5120ppe jkx- j 2= -e 1.06 10-7 sin(3p 108 t + 3.14)v / mz(3) 均匀平面波,波传播方向是 - x方向3.4(1)k = 20p,Vp = 310
8、8 m / s wkVp f =2p2p= 3109 Hz(2)E = 10-4 e- j 20p z (ex + jey),该波是左旋圆极化波3H=-1jwm Ep E = ex H = ey(4) Sav =j2p 10-3 e- j 20p ze 2 j- e j2p 10-3 e- j 20p zy2.710-7 e- j 20p z - e2.710-7 e- j 20p ze 2x1 ReE H * = ez 2.610-11 w / m22pj3.10(1) Exm=Eymf x = f y所以为线极性 传播方向为-Z方向;(2) Exm=Eymf x -f y = - p2所以
9、为左旋圆极性 传播方向为+Z方向;(3) Exm=Eymf x -f y = p2所以为右旋圆极性 传播方向为+Z方向;(4) Exm=Eymf x -f y = 0所以为线极性 传播方向为+Z方向;(5) Exm Eymf x -f y = - p2所以为左旋椭圆极性 传播方向为+Z方向;3.16(1) E-= (e- je)E- me jkz1xyE- = (e + je )E+ m1e- jkz2xy2E+= Em2 y2, E-= Emy- y21m2y + ym112y + y12y- y反射波E-= (e- je)E- me jkz= Em21 (e- je)e jkz1xy1y
10、+ yxy12折射波 E-= (e+ je)E+ me- jkz= Em2 y2(e + je)e- jkz22xy2y + yxy12Exm=Eymf x -f y = - p2所以入射波为左旋圆极性Exm=Eymf x -f y = p2所以反射波为右旋圆极性Exm=Eymf x -f y = - p2所以折射波为左旋圆极性第四章4.10反射系数t 2 =z1 - z 0=- 1 +jz1 + z 03 +j555-5 t 2=5驻波比:r =1+t 21- t 2= 5+4.12r600bc 段由z z ,所以工作在行驻波状态,驻波系数为=1.501 l400点c阻抗为纯电阻且小于z ,
11、故为电压波谷点,电流波腹点b,c段长为01l/4,故为电压波腹点,电流波谷点。点b呈现的阻抗为z = 900/ 6001.5= 450=zb02ab段工作在行波状态1ab段沿线各点电压u 和电流振幅iu = u=max450450+ 450900= 450vi = i=max900450+ 450=1AZ = 450Win(2) bc段工作在行驻波状态b点umax=450v, i min=900 i900+900max= 0.5AZ= umaxmax/ i min= 900Wc点u= u/ r = 300vminmaxi= i min r = 0.75AmaxZmin= umin/ imax=
12、 400W4.18(3)r = 0.4,x = 0.8.两圆的交点A,过A 作等反射系数圆,交右半实轴与B点得驻波系数r=4.5,K= 1r= 0.22延长OA交电刻度图,读数0为.11,以此为起点,逆时针旋转交于左半实轴 得电压波各点,距负载长度0为.5l-0.11l=0.39l。l电压最大点与最小点距离为。4电压波腹点距负载距离0为.14l(4)k = 0.32,r = 3.125以r = 3.125画等反射系数图,与圆图右实半轴A交点于LZL由A点沿等反射系数图逆时针0转.32到达B。得到B的归一化阻抗为Z =1.2+ j1.3所以终负载阻抗为Z = Zl0=(90+97.5j)以o为圆
13、心。oB为半径。至点B顺时针旋转1.29点刻度至C,in读C点归一化阻抗Z。= 0.34- j0.18Zin故,Z= Zin0= 25.5- j13.5第五章5.12P165 例 5.15.161a=22.86mMb=10.16mmlc TE10 = 2a = 4.572cmlc TE20 = a = 2.286cmlc TE30 =2 a = 1.534cm 3lc TE01= 2b = 2.032cml = 4cm时,lc TE20 l lc TE10,传TE10波l = 3cm时,lc TE20 l lc TE10,传TE10波l = 1.5cm时,传TE10,TE20,TE30,TE01波ll(2) a l,0 b , lc TE20 l lc TE10222.286cm l 4.572cm5.171. 3. 5 书上 P171第六章6.12q = arg s= p21L = 10lg1s221= 10lg10.98 2= 0.18 dBT = s1 + s111 - s21= 0.98 e jp1 + 0.2r = 1.5 1 - 0.2116.14s= s互易1221s 2 + s 21121= 0.01 + 0.64 1有耗第七章7.14l =2( m )2 + ( n )2 + ( p )2abc0m = 1.n = 0, p = 1l = 7.68cm0
限制150内