高等数学(下)空间解析几何与向量代数.ppt
《高等数学(下)空间解析几何与向量代数.ppt》由会员分享,可在线阅读,更多相关《高等数学(下)空间解析几何与向量代数.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、向量在轴上的投影与投影定理一、向量在轴上的投影与投影定理证证于是于是空间两向量的夹角的概念:空间两向量的夹角的概念:类似地,可定义类似地,可定义向量与一轴向量与一轴或或空间两轴空间两轴的夹角的夹角.特殊地,当两个向量中有一个零向量时,规定特殊地,当两个向量中有一个零向量时,规定它们的夹角可在它们的夹角可在0与与 之间任意取值之间任意取值.空间一点在轴上的投影空间一点在轴上的投影空间一向量在轴上的投影空间一向量在轴上的投影关于向量的关于向量的投影定理(投影定理(1 1)证证定理定理1 1的说明:的说明:投影为正;投影为正;投影为负;投影为负;投影为零;投影为零;(4)相等向量在同一轴上投影相
2、等;相等向量在同一轴上投影相等;关于向量的关于向量的投影定理(投影定理(2 2)(可推广到有限多个)(可推广到有限多个)二、向量在坐标轴上的分向量与向量二、向量在坐标轴上的分向量与向量的坐标的坐标由例由例1知知 向向量量在在 轴轴上上的的投投影影 向向量量在在 轴轴上上的的投投影影 向向量量在在 轴轴上上的的投投影影按基本单位向量的按基本单位向量的坐标分解式坐标分解式:在三个坐标轴上的在三个坐标轴上的分向量分向量:向量的向量的坐标坐标:向量的向量的坐标表达式坐标表达式:特殊地:特殊地:向量的加减法、向量与数的乘法运算的坐标表达式向量的加减法、向量与数的乘法运算的坐标表达式解解设设为直线上的点,
3、为直线上的点,由题意知:由题意知:非零向量非零向量 的的方向角方向角:非零向量与三条坐标轴的正向的夹角称为方向角非零向量与三条坐标轴的正向的夹角称为方向角.三、向量的模与方向余弦的坐标表示式三、向量的模与方向余弦的坐标表示式由图分析可知由图分析可知向向量量的的方方向向余余弦弦方向余弦通常用来表示向量的方向方向余弦通常用来表示向量的方向.向量模长的坐标表示式向量模长的坐标表示式当当 时,时,向量方向余弦的坐标表示式向量方向余弦的坐标表示式方向余弦的特征方向余弦的特征特殊地:单位向量的方向余弦为特殊地:单位向量的方向余弦为解解所求向量有两个,一个与所求向量有两个,一个与 同向,一个反向同向,一个反向或或解解解解向量在轴上的投影与投影定理向量在轴上的投影与投影定理.向量在坐标轴上的分向量与向量的坐标向量在坐标轴上的分向量与向量的坐标.向量的模与方向余弦的坐标表示式向量的模与方向余弦的坐标表示式.四、小结四、小结(注意分向量与向量的坐标的(注意分向量与向量的坐标的区别区别)思考题思考题思考题解答思考题解答对角线的长为对角线的长为练练 习习 题题练习题答案练习题答案
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 空间 解析几何 向量 代数
限制150内