八年级上册数学教案人教版【优秀8篇】.docx
《八年级上册数学教案人教版【优秀8篇】.docx》由会员分享,可在线阅读,更多相关《八年级上册数学教案人教版【优秀8篇】.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级上册数学教案人教版【优秀8篇】提高学习效率并非一朝一夕之事,需要长期的探索和积累。前人的经验是可以借鉴的,但必须充分结合自己的特点。影响学习效率的因素,有学习之内的,但更多的因素在学习之外。首先要养成良好的学习习惯,合理利用时间,另外还要注意专心、用心、恒心等基本素质的培养,对于自身的优势、缺陷等更要有深刻的认识。白话文为大家精心整理了八年级上册数学教案人教版【优秀8篇】,希望能够帮助到大家。人教版八年级上册数学教案 篇一 一、教学目标: 1、加深对加权平均数的理解 2、会根据频数分布表求加权平均数,从而解决一些实际问题 3、会用计算器求加权平均数的值 二、重点、难点和难点的突破方法:
2、1、重点:根据频数分布表求加权平均数 2、难点:根据频数分布表求加权平均数 3、难点的突破方法: 首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。 应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41X61,共有20个数据,若分布较为平均,41、42、43、4460个出现1次,那么这组数据的和为41+42+60=101
3、0。而用组中值51去乘以频数20恰好为10201010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。 为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。 三、例习题的意图分析 1、教材P140探究栏目的意图。 (1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。 (2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。 这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如
4、组、组中值及频数在表中的具体意义。 2、教材P140的思考的意图。 (1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题 (2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。 3、P141利用计算器计算平均值 这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
5、 四、课堂引入 采用教材原有的引入问题,设计的几个问题如下: (1)、请同学读P140探究问题,依据统计表可以读出哪些信息 (2)、这里的组中值指什么,它是怎样确定的? (3)、第二组数据的频数5指什么呢? (4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。 五、随堂练习 1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表 所用时间t(分钟)人数 0t10 p= 4 0 6 20t20 p= 14 30t40 p= 13 40t50 p= 9 50t60 p= 4 (1
6、)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1)。15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28X30 4 30X32 3 32X34 8
7、 34X36 7 36X38 9 38X40 11 40X42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 八年级上册数学教案人教版 篇二 矩形教案 教学目标: 知识与技能目标: 1掌握矩形的概念、性质和判别条件。 2提高对矩形的性质和判别在实际生活中的应用能力。 过程与方法目标: 1经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。 2知道解决矩形问题的基本思想是
8、化为三角形问题来解决,渗透转化归思想。 情感与态度目标: 1在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。 2通过对矩形的探索学习,体会它的内在美和应用美。 教学重点:矩形的性质和常用判别方法的理解和掌握。 教学难点:矩形的性质和常用判别方法的综合应用。 教学方法:分析启发法 教具准备:像框,平行四边形框架教具,多媒体课件。 教学过程设计: 一、情境导入: 演示平行四边形活动框架,引入课题。 二、讲授新课: 1、归纳矩形的定义: 问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。) 结论:有一个内角是直角的平行四边形是矩形。 2探究矩形的
9、性质: (1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答。) 结论:矩形的四个角都是直角。 (2)探索矩形对角线的性质: 让学生进行如下操作后,思考以下问题:(幻灯片展示) 在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状。 随着的变化,两条对角线的长度分别是怎样变化的? 当是锐角时,两条对角线的长度有什么关系?当是钝角时呢? 当是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系? (学生操作,思考、交流、归纳。) 结论:矩形的两条对角线相等。 (3)议一议:(展示问题,引导
10、学生讨论解决) 矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由。 直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗? (4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”) 矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形。 例解:(性质的运用,渗透矩形对角线的“化归”功能) 如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4 厘米,求BD与AD的长。 (引导学生分析、解答) 探索矩形的判别条件:(由修理桌子引出) (5)想一想:(学生讨论、交流、共同学习) 对角线相等的平行四边形是
11、怎样的四边形?为什么? 结论:对角线相等的平行四边形是矩形。 (理由可由师生共同分析,然后用幻灯片展示完整过程。) (6)归纳矩形的判别方法:(引导学生归纳) 有一个内角是直角的平行四边形是矩形。 对角线相等的平行四边形是矩形。 三、课堂练习:(出示P98随堂练习题,学生思考、解答。) 四、新课小结: 通过本节课的学习,你有什么收获? (师生共同从知识与思想方法两方面小结。) 五、作业设计:P99习题4.6第1、2、3题。 板书设计: 1、矩形 矩形的定义: 矩形的性质: 前面知识的小系统图示: 2、矩形的判别条件: 例1 课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己
12、动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。 人教版八年级上册数学教案 篇三 教学目标 1、知识与技能 领会运用完全平方公式进行因式分解的方法,发展推理能力。 2、过程与方法 经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。 3、情感、态度与价值观 培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。 重、难点与关键 1、重点:理解完全平方公式因式分解,并学会应用。 2、难点:灵活地应用公式法进行因式分
13、解。 3、关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的 教学方法 采用“自主探究”教学方法,在教师适当指导下完成本节课内容。 教学过程 一、回顾交流,导入新知 【问题牵引】 1、分解因式: (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2; (3)x2-0.01y2. 【知识迁移】 2、计算下列各式: (1)(m-4n)2;(2)(m+4n)2; (3)(a+b)2;(4)(a-b)2. 【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。 3、分解因式: (1)m2-8mn+16n2(2)m2+8mn
14、+16n2; (3)a2+2ab+b2;(4)a2-2ab+b2. 【学生活动】从逆向思维的角度入手,很快得到下面答案: 解: (1)m2-8mn+16n2=(m-4n)2; (2)m2+8mn+16n2=(m+4n)2; (3)a2+2ab+b2=(a+b)2; (4)a2-2ab+b2=(a-b)2. 【归纳公式】完全平方公式a22ab+b2=(ab)2. 二、范例学习,应用所学 【例1】把下列各式分解因式: (1)-4a2b+12ab2-9b3; (2)8a-4a2-4; (3)(x+y)2-14(x+y)+49;(4)+n4. 【例2】如果x2+axy+16y2是完全平方,求a的值。
15、【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3. 三、随堂练习,巩固深化 课本P170练习第1、2题。 【探研时空】 1、已知x+y=7,xy=10,求下列各式的值。 (1)x2+y2;(2)(x-y)2 2、已知x+=-3,求x4+的值。 四、课堂总结,发展潜能 由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个: a2-b2=(a+b)(a-b); a2ab+b2=(ab)2. 在运用公式因式分解时,要注意: (1)每个公式的形式与特点,通过对多项式的项数
16、、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。 五、布置作业,专题突破 人教版八年级上册数学教案 篇四 一、内容和内容解析 1、内容 三角形高线、中线及角平分线的概念、几何语言表达及它们的画法。 2、内容解析 本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的
17、高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。 理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入。学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用。它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备。 本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系。 二、目标和目标解析 1、教学目标 (1)理解三角形的高、中线与角平
18、分线等概念; (2)会用工具画三角形的高、中线与角平分线; 2、教学目标解析 (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念。 (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质。 (3)掌握三角形的高、中线与角平分线的画法。 (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点。 三、教学问题诊断分析 三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上。 三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点。 三
19、角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上。而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别。 八年级上册数学教案人教版 篇五 因式分解教案 教学目标: 1、理解运用平方差公式分解因式的方法。 2、掌握提公因式法和平方差公式分解因式的综合运用。 3、进一步培养学生综合、分析数学问题的能力。 教学重点: 运用平方差公式分解因式。 教学难点: 高次指数的转化,提公因式法,平方差公式的灵活运用。 教学案例: 我们数学组的观课议课主题: 1、关注学生的合作交流 2、如何使学困生能积极参与课堂交流。 在精心备课过程中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优秀8篇 年级 上册 数学教案 人教版 优秀
限制150内