平台营销的算法欺骗风险及其法律规制.docx
《平台营销的算法欺骗风险及其法律规制.docx》由会员分享,可在线阅读,更多相关《平台营销的算法欺骗风险及其法律规制.docx(61页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平台营销的算法欺骗风险及其法律规制要目一、平台营销的运行理念和表征特点二、平台营销中算法欺骗的产生三、算法欺骗的法律规制困境四、算法欺骗的法律规制路径以用户画像和实时个性化为核心的平台营销为算法在数字经济和平台交易中的广泛应用提供了可能。为了优化平台营销模式、实现企业利润最大化,算法在进行个性化推荐的过程中有意或无意地操纵甚至欺骗消费者。“算法欺骗”的产生不仅突破了现有的法律规制体系也挑战了现行法律归责制度。因此,证实“算法欺骗”在法律上的因果关系、实现对平台企业的有效归责、保障用户隐私权和平等权益成为规制算法欺骗风险的重中之重。算法欺骗的法律规制路径主要有:创设算法代理与信义义务理论、用户隐
2、私保护与平等保障机制的构建,以及建立算法监管问责机制。大数据、人脸识别、算法和其他类型的人工智能技术正日益改变并形塑着消费者的消费模式和交易习惯。企业利用算法设计产品广告、销售门户、退换货流程,进行产品定价,决定产品种类和售前售后服务模式,并达到实现优化利润的目标。与此同时,算法也在利用网络环境的特征操纵甚至欺骗消费者。这一现象在数字经济模式下非常普遍,以至于诞生了“算法欺骗”这个术语。尽管“算法欺骗”的产生可能源于程序设计师的恶意编程,但今天的算法系统可以自主学习甚至欺骗人类,即使人类没有设计它们这样做。尤其当欺骗消费者的行为有利可图时,由只为优化盈利设计的算法将不可避免欺骗消费者。此外,由
3、于算法的不透明性,算法欺骗消费者的行为往往由于其隐蔽性而难以证实和追责。比如,算法可以产生大量独特排列的在线广告、网站和软件应用程序。每个排列都可以在特定的时间、特定的上下文中为特定的使用者量身定制信息并发送给他们。随之而来的是,越来越多的算法设计、微观目标和不断变化的数据传输,使得以前用来证明具有误导性或欺骗性的商业行为的方法已经失效。算法欺骗不仅是不可避免的,它也逃避了旨在禁止、惩罚和阻止商业欺诈的监管和审查。因此,识别算法欺骗的特征、分析算法欺骗产生的原因,提出精准有效的监管措施和规制方法是当下亟待解决的重点问题。一、平台营销的运行理念和表征特点平台营销的运行理念平台营销的运行理念是向每
4、个消费者呈现个性化的体验,这种体验通过两种方式进行微目标定位:第一,针对该消费者进行个性化设计;第二,算法实时优化覆盖销售全过程。许多平台的主页登录页面登录页面和内部页面是由算法实时编制的,并针对目标消费者进行定制,应用程序也同样如此。就像面对面销售一样,这种数字行为打破了营销和销售之间的界限;微型目标数字材料既是向消费者传递信息的通信,也是企业向消费者销售产品的接口。为了在线界面设计的目的,算法采集并输入任何已知或推断的消费者数据,包括他们的收入、习惯、近期的生活习惯和心理状态。一个实时优化的界面是根据可能影响消费者是否以业务所需的方式响应的时刻的维度设计的。例如,这可能包括消费者一天、一周
5、或一年的时间、地点、天气、目前的活动以及情绪或身体状态。比如,某平台可能会使用视频捕捉和情感识别软件来瞄准“18岁至30岁的女性,她们在那一刻看起来很悲伤”。在获取“转化率”方面,微目标材料可能比大众传播和标准化销售接口更有效,“转化率”指的是点击量、页面浏览量、销售额、客户留存率,或企业希望得到的任何消费者反应。咨询公司麦肯锡报告称,“基于个人实时需求、兴趣和行为的数据激活营销可以将总销售额提高15%到20%”。在一项实验中,学者们发现,即使是定制一条横幅广告,消费者点击该广告的次数也几乎增加了一倍。微目标数字材料并不总能达到目标,但设定目标的技术正在不断变得更加准确。数字经济中的四个关键要
6、素让平台能够在每一刻为每个消费者提供最有效的数字设计:无处不在的数据收集、连接的数字接口、算法和创造性的人工智能。平台营销的表征特点1.无处不在的数据收集现实情况中,当消费者在浏览平台界面时,他们的行为经常被实时监控,平台可以随时把最合适的产品推荐给顾客。通过无处不在的数据收集,算法收集了大量关于人的信息数据,其中很多可以匹配到跨设备和环境的个人。这些数据主要从个人信用卡和借记卡记录,在线搜索、浏览、游戏、阅读和社交媒体活动,电子邮件和在线日历,声音和通过物联网捕捉的视频以及智能手机定位跟踪传感器等媒介中提取。同时,算法利用上述大数据来推断和预测消费者的身份、资源、需求、习惯、情绪、行为和对刺
7、激的反应。那些能够被推断或预测到具有足够的商业价值的信息是惊人的。单是定位数据就可以提供“婚姻不稳定的迹象、吸毒成瘾的证据,以及心理治疗的记录。”通过手机收集的按键和加速度计数据可以精准识别个体消费者。年龄、性别、性取向、种族、宗教、政治观点、个性、认知能力和对生活的满意度可以很好地从Facebook的“喜欢”中推断出来。为了衡量广告的效果,并决定未来的广告服务时间和对象,算法可以将电视广告印象数据与消费者的智能手机、平板电脑和电脑数据,以及个人或家庭购买数据联系起来。进入工业文明以来,企业为了盈利一直在收集和分析客户信息,但数据的数量和粒度以及挖掘速度和我们今天面临的算法收集和分析截然不同特
8、别是大数据分析可以揭示人类可能从未考虑过的关系。一个不直观但意义重大的发现是元数据即关于数据的数据,可以与消费者在网上观看或做的内容或内容一样具有预测性。大数据揭示的是,消费者在网上发布的照片的色调、亮度和饱和度以及内容都能反映出发布人的性格特征与兴趣爱好。此外,消费者在社交媒体上分享信息的广度,以及他们写电子邮件的长度、复杂性和语法和他们分享或撰写的内容一样,都能用来预测他们对市场营销的反应。2.密集的连接数字接口人们越来越多地通过在线数字界面来生活购物、玩耍、社交、组织、阅读、学习等等。数字接口既是当今无处不在的数据收集的管道,也是传递广告、网页、电子邮件、文本和其他受收集数据影响的材料的
9、媒介。此外,数字界面不是消费者可以轻易拒绝互动的被动留言板;它是动态的、互动的、侵入性的和适应性的;它还会闪现信息,在新闻和社交媒体消息中插入内容,甚至会改变消费者实际路径上的数字广告牌显示。在线下,营销会带有一定的针对性,但在数字经济的在线界面上可以进行实时营销。算法可以根据消费者或环境的提示立即改变。例如,旅游公司Expedia在2016年宣布,通过网络摄像头和智能手机摄像头,它能够分析消费者在浏览销售网站时的面部表情,并立即根据消费者对网站的非语言反应提供个性化服务。连接接口帮助平台实现了对消费者最直接且全面的控制。平台界面的内容、字体、颜色和布局以及图像、图形、产品搜索流程等都是由企业
10、决定的。这种控制允许企业为单个消费者设计交互,并为企业寻求的结果优化交互。数字营销的商业价值体现在企业的选择上,现在的网络广告数量要远远超出传统纸质媒体。3.个性化营销通过机器学习和实验,算法日臻完善。目前,算法足以以微观目标数字商业材料回应消费者需要。并能根据消费者和市场的变化,实时优化这些材料的有效性。算法系统运行迅速、准确、自主且不透明。虽然营销人员长期以来一直使用测试来预测哪些广告最有效,但离线的人工指导和在线的实时机器控制的实验之间的差异是深远的。算法的速度和规模使人们能够进入一个普通人类迭代无法探索的巨大设计空间。2020年的一项实验显示,平台营销文本的转化率是基于人类营销人员目标
11、文本的13倍。在追求准确性和速度的过程中,机器正在生成越来越不受人类假设和限制的算法。在无监督的机器学习中,计算机处理未标记的数据以找到模式,并使用这些模式对新数据做出预测。2020年,谷歌宣布了一种新的自动机器学习系统,该系统无须人工参与算法设计;该系统每秒测试10,000个模型,直到找到该任务的最佳算法。因为算法可以发现和利用人类从未测试过甚至没有注意到的关系,传统的销售员营销已被平台营销超越并取代。“这是一种自动化到可以通过在营销软件系统中设定商业目标来引导的营销过程。”平台营销系统通过在案例子集上进行随机操作来进行自主实验。大多数算法驱动的营销实验都是在人群层面上进行的,利用与一组消费
12、者和情境相关的数据,预测使用相似的相关数据对消费者和情境最有效的设计。现在,最前沿的是“互动营销”在单个消费者身上进行实验,以发现哪种数字设计能让消费者在微小的瞬间产生“想要”的行为。当算法了解到更多关于特定用户的信息时,向用户呈现的数字界面就会进行调整。企业不需要投入资本研发平台营销技术,因为有成千上万的第三方供应商提供服务来执行平台营销过程的不同部分。算法自动化的效率意味着即使是小公司也会采用这些技术。正如谷歌在2018年宣布的那样,其服务正在“让每个广告商都掌握算法”。4.创造性营销Facebook的广告只有标题、主文本、视觉效果和视频以及一个行动号召按钮四个组件。算法可以选择一组人工创
13、建的组件选项,并预测哪种组合最适合消费者。现在的人工智能科技可以让算法生成自己的内容,并在没有任何一个由人类直接设计组件的情况下创造数字商业材料。一家汽车制造商使用人工智能为数千种不同的广告编写文本,每一种广告都是针对100多个不同的消费群体中的一个量身定制的。咨询公司Gartner预测,“到2022年,营销内容创作者将利用人工智能内容生成技术制作超过30%的数字内容。”算法生成的内容不仅便宜,而且非常有效。算法可以创造出比人类营销人员更有说服力的文本。2019年,一家金融服务公司得出结论,该公司的聊天机器人接受了公司呼叫中心语音数据的训练,在销售贷款方面的成功程度堪比顶级人工电话营销人员,是
14、没有经验的电话营销人员的4倍。二、平台营销中算法欺骗的产生平台营销中的数字环境促成算法欺骗主要有以下三个原因。首先,消费者认为数字界面缺乏代理,这使得消费者不会注意到在线材料可能被设计成欺骗的程度。其次,消费者通常以一种高效的、以任务为中心的、习惯性的方式与在线环境互动,导致他们经常忽略数字界面中的信息。最后,大数据和实时跟踪可以识别出哪些消费者因个人特征、身体或情绪状态而特别容易受到攻击,这让企业有机会利用这一弱点。数字环境滋生算法欺骗人们通常把数字界面理解为与他人互动的工具,但是用户在使用这些界面时基本上看不到它们。正如哲学家们所讨论的,“一旦我们习惯了一种特定的技术,设备或界面本身就会从
15、有意识的注意力中退去,让我们能够专注于我们正在用它来完成的任务。”用户并不关注界面的设计如何塑造他们与在线内容的交互和感知。消费者也低估了在线下购物环境中所呈现的信息和选择的构造性质。销售人员可以利用各种人际影响技巧来做出选择,这些技巧之所以强大,部分原因是它们不被注意到。商店里有些食物摆放在成年人的视线范围内,有些则放在儿童的视线范围内,但人们往往忽略了货架是为了增加销售额而设计的。然而,尽管消费者对商家可能试图在线下欺骗他们的意识有限,但他们更不会相信商家可能在网上欺骗他们。因此,企业有动机去培养和维持消费者的控制错觉。一位网页设计顾问观察到,网站访问者倾向认为他们对自己的行为负责。当用户
16、认为自己对针对他们的商业信息有更多的控制权时,他们发现这些信息更有说服力。即使控制的是传递信息的“化身”,而不是信息本身。消费者对控制的错觉以及他们没有意识到数字界面是为企业的利益而设计的,这构成了欺骗性设计不太可能受到质疑甚至被注意到的背景。被欺骗后,用户可能会责备自己没有仔细检查界面,或者没有仔细阅读屏幕上的文本。微目标可能会加剧自责,因为向不同的消费者展示不同的数字材料可能会掩盖他们经历背后的共性,降低消费者认识到个人受害的可能性。即使是单一的消费者也可能没有机会两次检查同一网页,以辨别欺骗成分;就数字内容的微目标而言,人工智能“经常按需生成网页,这些网页以前没有人见过,将来也不会再见到
17、。”根据调查分析,平台个性化推荐的商品质量并未得到有效保障,而更多的是广告植入,经常会推荐一些性价比较低的商品。消费者上网习惯诱发算法欺骗人工智能时代的互联网允许用户进行多任务处理,将他们的注意力分散到不同的设备、窗口上,当使用移动设备时,还可以浏览世界。他们只感知一小部分在线内容。即使是在线下,消费者通常也不会阅读细则。但在网上,有三件事会发生:第一,消费者的关注范围进一步缩小;第二,无形内容的数量可以大幅扩大;第三,消费者不太仔细地阅读网页设计,并根据他们的反射性习惯做出假设。有经验的互联网用户以一种高度目标导向的方式将他们的注意力放在网上。他们不自觉地忽略任何看起来是例行公事的东西,比如
18、“服务条款”超链接或滚动框。消费者声称,他们在点击“我同意”之前会阅读文本,但实际证据表明他们并不这么做。一项研究发现,在自然条件下,每1000个软件购买者中只有一到两个会点击查看条款和条件,即使是这些罕见的消费者也不太可能阅读他们发现的内容。可以插入在线细则的术语数量几乎是无限的。在线下进行的交易,除了商品的身份和价格之外,没有任何条款,在线交易还伴随着大量的附加条款,在线小字印刷的长度可能正在扩大。因此,企业在网上比在线下有更多的空间来隐藏有关其交易的重要信息。更重要的是,消费者往往会不自觉地忽略网上的大字体、图片和视频。互联网用户“高度关注当前的任务,无情地忽视与他们的目标无关的内容。”
19、他们的眼睛扫视着标题和副标题。用户通常会忽略任何与广告相邻的内容,那些位于广告通常出现的位置的内容,或者那些在视觉上从周围内容中突出的内容,因为他们认为这些位置或格式中的任何一个内容都是广告。对于在笔记本电脑或台式机等大屏幕上浏览的网站,用户平均只花8%的时间在屏幕底部20%的地方。他们将60%的时间花在网站的第一个可见屏幕上,而不是看“折页以下”。消费者同时使用移动设备完成许多其他任务,这让他们更容易分心,注意力持续时间更短。举例来说,在乘坐地铁时使用移动设备需要将注意力分散在看屏幕、保持个人空间和跟踪车站上,减少用于检查数字界面的心理带宽。使用移动设备的消费者非常不耐烦:超过半数的消费者只
20、会等待3秒或更少的时间来加载网站。这些数字观看习惯可能会让企业在很大程度上展示消费者通常无法阅读的内容。产品或服务的好处可以在消费者看到的区域内吹捧,而利益的成本、风险、条件或限制可以隐藏在消费者很少关注的区域内。这使得消费者很容易被欺骗,因为大多数人在做决定时完全忽视了未知和不受注意的信息。为了节省时间和精力,消费者还根据对在线互动的假设开发了反射性捷径。当他们在网上注册一项服务、安装一个程序或购买一种产品时,许多人都迫不及待地开始使用一项新的服务或完成一项任务,他们经常会一个接一个地点击“下一步”按钮,就像在自动驾驶仪上一样。此外,数字内容的动态特性为利用一种称为变化盲目性的感知怪癖提供了
21、机会,用户通常认为,如果屏幕发生变化,用户就会注意到变化。变化盲目性是指当焦点在其他地方,或者没有视觉线索来提醒消费者变化时,未能察觉到视野中的变化。例如,当页面重新加载或闪烁时,通过更改网页的内容,新内容看起来不会相对于页面的其余部分移动,也不会引起用户的注意。或者,当用户将注意力从屏幕或屏幕的一部分移开时,可以定时进行移动。算法瞄准并利用平台交易漏洞从消费者的人口统计数据和行为中可以推断出永久性或暂时性的认知或感知障碍。例如,年龄的增长会降低人们对屏幕外围和蓝色(超链接的传统颜色)的感知。实时数据可以通过减少消费者的注意力来显示损害感知的状态。例如,玩家在玩在线游戏时可能处于“心流”状态,
22、因此更有可能无意识地点击突出显示的按钮继续游戏。暂时性的认知和精神运动能力丧失,包括疲劳或醉酒造成的能力丧失,可以从移动设备的地理空间移动、键盘敲击的方式,甚至是推文的模式中推断出来。发现减值可以利用欺骗性设计来实现销售,如果没有减值就不会发生。大数据可以方便地根据消费者的个性特征、教育水平或最近的生活事件来定位他们,所有这些都可能影响欺骗的易感程度。将横幅广告与消费者的冲动性相匹配,极大地提高了广告的效果。与受教育程度较高的消费者相比,黑暗模式对受教育程度较低的消费者的决策影响更大。调查表明,最近发生的负面生活事件(如离婚、失业、家庭成员或密友去世)与容易受骗之间有直接关系。其他预测欺骗易感
23、性的因素则更加出人意料。例如,更善于计算而不那么冲动的消费者似乎更容易相信某些类型的误导性广告。对实际消费者进行实时的基于机器的实验,可能会在人群层面上发现更复杂的易感性关联。互动营销对个体消费者进行的实验甚至可能识别出脆弱性的特殊迹象。情绪状态可能影响欺骗性设计的易感性,也可以通过大数据分析检测出来。2017年,脸书告诉广告商,它可以“实时监控帖子和照片,借此判断年轻人何时感到压力挫败不知所措焦虑紧张愚蠢愚蠢无用和失败”。人们不需要接受该公司的表面价值,就可以看到,即使是对这些感觉的不完善的预测,也可以被用来打动易受欺骗的消费者。压力和焦虑会损害认知功能和决策能力;抑郁症与认知能力下降有关。
24、情绪状态和对广告的反应之间的关系并不是什么新发现。正如营销专家解释的那样:“情绪是广告商能够极大影响的一种情境。例如,广告商可以根据媒体内容所引发的情绪来选择节目、杂志、报纸,甚至是互联网网站。”不同之处在于,情感定位可以非常精确,利用特定时刻特定消费者的数据,比如对消费者的电子邮件或其他在线“对话”进行“内容情感分析”。数字通信也会把个人带入更脆弱的状态,助长欺骗。正如瑞恩卡洛所言:“公司将越来越多地处于创造傻瓜的位置,而不是等待一个傻瓜诞生。”一个引人注目的例子是Facebook成功地操纵新闻推送来影响用户的情绪。一个更普通的例子是,商业信息错误地声称某个优惠将很快过期或数量有限,让消费者
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平台 营销 算法 欺骗 风险 及其 法律 规制
限制150内