2022-2023学年安徽省安庆市区二十三校中考数学对点突破模拟试卷含解析.doc
《2022-2023学年安徽省安庆市区二十三校中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省安庆市区二十三校中考数学对点突破模拟试卷含解析.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )ABCD2如图,在正八边形ABCDEFGH中
2、,连接AC,AE,则的值是()A1BC2D3如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB1,点A在函数y(x0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y(x0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()ABCD4如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sinAOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则AOF的面积等于( )A30B40C60D805如图,ABCD,FEDB,垂足为E,150,则2的度数是( )A60B50C40D306下列计算正
3、确的是()A(a+2)(a2)a22B(a+1)(a2)a2+a2C(a+b)2a2+b2D(ab)2a22ab+b27如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为 cm2,则扇形圆心角的度数为()A120B140C150D1608如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A11B10C9D169要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A两点之间的所有连线中,线段最短B经过两点有一
4、条直线,并且只有一条直线C直线外一点与直线上各点连接的所有线段中,垂线段最短D经过一点有且只有一条直线与已知直线垂直10如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()ABC9D二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,ABAC10cm,F为AB上一点,AF2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0t5),连D交CF于点G若CG2FG,则t的值为_12如图,在同一平面内,将边长相等的正三角形和正
5、六边形的一条边重合并叠在一起,则1的度数为_13若O所在平面内一点P到O的最大距离为6,最小距离为2,则O的半径为_14解不等式组 请结合题意填空,完成本题的解答(1)解不等式,得_;(2)解不等式,得_;(3)把不等式和的解集在数轴上表示出来;(4)原不等式组的解集为_15关于的一元二次方程有两个不相等的实数根,则实数的取值范围是_16小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_三、解答题(共8题,共72分)17(8分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被
6、调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?18(8分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0)点C、D分别在OB、AB边上,DCOA,CB=2(I)如图,将DCB沿射线CB方向平移,得到DCB当点C平移到OB的中点时,求点D的坐标;(II)如图,若边DC与AB的交点为M,边DB与ABB的角平分线交于点N,当BB多大时,四边形MBND为菱形?并说明理由(
7、III)若将DCB绕点B顺时针旋转,得到DCB,连接AD,边DC的中点为P,连接AP,当AP最大时,求点P的坐标及AD的值(直接写出结果即可)19(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,连接BP,DQ(1)依题意补全图 1;(2)连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: 20(8分)已知抛物线经过点,把抛物线与线段围成的封闭图形记作 (1)求此抛物线的解析
8、式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围21(8分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由
9、22(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为 (1)求,的值;(2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积23(12分)观察猜想:在RtABC中,BAC=90,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90,点D落在点E处,如图所示,则线段CE和线段BD的数量关系是 ,位置关系是 探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图中画出图形,并证明你的判断拓展延伸:如图,BAC90,若ABAC,ACB=45,AC=,其他条件不变,过点D作DFAD交CE于点
10、F,请直接写出线段CF长度的最大值24如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45方向上的点C处问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:1.41,1.73)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: 抛物线y=ax
11、2+bx+c与反比例函数y=的图象在第一象限有一个公共点,b0,交点横坐标为1,a+b+c=b,a+c=0,ac0,一次函数y=bx+ac的图象经过第一、三、四象限故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b0,ac0.2、B【解析】连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解【详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故=故选:B【点睛】本题考查了正多边形的性质,正确作出辅助线是关键3、C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可
12、得出结论详解:OB=1,ABOB,点A在函数 (x0)的图象上,k=4,反比例函数的解析式为,O1(3,0),C1O1x轴,当x=3时, P 故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.4、B【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出结论【详解】过点A作AMx轴于点M,如图所示设OA=a,在RtOAM中,AMO
13、=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a,a)点A在反比例函数y=的图象上,aa=a2=48,解得:a=1,或a=-1(舍去)AM=8,OM=6,OB=OA=1四边形OACB是菱形,点F在边BC上,SAOF=S菱形OBCA=OBAM=2故选B【点睛】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出SAOF=S菱形OBCA5、C【解析】试题分析:FEDB,DEF=90,1=50,D=9050=40,ABCD,2=D=40故选C考点:平行线的性质6、D【解析】A、原式=a24,不符合题意;B、原式=a2a2,不符合
14、题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a22ab+b2,符合题意,故选D7、C【解析】根据扇形的面积公式列方程即可得到结论【详解】OB=10cm,AB=20cm,OA=OB+AB=30cm,设扇形圆心角的度数为,纸面面积为 cm2,=150,故选:C【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .8、B【解析】根据矩形和折叠性质可得EHCFBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9x,在RtBCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案【
15、详解】如图,四边形ABCD是矩形,AD=BC,D=B=90,根据折叠的性质,有HC=AD,H=D,HE=DE,HC=BC,H=B,又HCE+ECF=90,BCF+ECF=90,HCE=BCF,在EHC和FBC中,EHCFBC,BF=HE,BF=HE=DE,设BF=EH=DE=x,则AF=CF=9x,在RtBCF中,由BF2+BC2=CF2可得x2+32=(9x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,GF=ABAGBF=944=1,EF2=EG2+GF2=32+12=10,故选B【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性
16、较强,熟练掌握各相关的性质定理与判定定理是解题的关键.9、B【解析】本题要根据过平面上的两点有且只有一条直线的性质解答【详解】根据两点确定一条直线故选:B【点睛】本题考查了“两点确定一条直线”的公理,难度适中10、A【解析】解:如图,连接BE,设BE与AC交于点P,四边形ABCD是正方形,点B与D关于AC对称,PD=PB,PD+PE=PB+PE=BE最小即P在AC与BE的交点上时,PD+PE最小,为BE的长度直角CBE中,BCE=90,BC=9,CE=CD=3,BE=故选A点睛:此题考查了轴对称最短路线问题,正方形的性质,要灵活运用对称性解决此类问题找出P点位置是解题的关键二、填空题(本大题共
17、6个小题,每小题3分,共18分)11、1【解析】过点C作CHAB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值【详解】如下图,过点C作CHAB交DE的延长线于点H,则,DFCH,同理,解得t1,t(舍去),故答案为:1【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.12、60【解析】先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)1806=120,1=120-60=60.故答案为:60.【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 安徽省 安庆 市区 十三 中考 数学 突破 模拟 试卷 解析
限制150内