2022-2023学年北京市一零一中学中考数学最后冲刺浓缩精华卷含解析.doc
《2022-2023学年北京市一零一中学中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年北京市一零一中学中考数学最后冲刺浓缩精华卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,点A、B、C在O上,OAB=25,则ACB的度数是()A135B115C65D502已知关于x的二次函数yx22x2,当axa+2时,函数有最大值1,则a的值为()A1或1B1或3C1或3D3或33如图,点O在第一象限,O与x轴相切于H点,
2、与y轴相交于A(0,2),B(0,8),则点O的坐标是()A(6,4)B(4,6)C(5,4)D(4,5)4从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )ABCD5如图是二次函数的部分图象,由图象可知不等式的解集是( )ABC且Dx1或x56如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B已知小颖的眼睛D离地面的高度CD1.5m,她离镜子的水平距离CE0.5m,镜子E离旗杆的底部A处的距离AE2m
3、,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A4.5mB4.8mC5.5mD6 m7全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( )ABCD8用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用张铝片制作瓶身,则可列方程( )ABCD9如图,在矩形ABCD中,AB4,AD5,AD,AB,BC分别与O相切于E,F,G三点,过点D作O的切线交BC于点M,切点为N,
4、则DM的长为( )ABCD10在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A千里江山图B京津冀协同发展C内蒙古自治区成立七十周年D河北雄安新区建立纪念二、填空题(本大题共6个小题,每小题3分,共18分)11若反比例函数的图象位于第二、四象限,则的取值范围是_.12如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D当ODAD3时,这两个二次函数的最大值之和等于_13抛物线y2x2+3x+k2经过点(1,0
5、),那么k_14如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则APB=_ .15如图,为了测量河宽AB(假设河的两岸平行),测得ACB30,ADB60,CD60m,则河宽AB为 m(结果保留根号)16已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_.三、解答题(共8题,共72分)17(8分)已知:如图所示,抛物线y=x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)(1)求抛物线的表达式;(2)设点P在该抛物线上滑动,且满足条件SPAB=1的点P有几个?并求出所有点P的坐标18(8分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路
6、上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度19(8分)某海域有A、B两个港口,B港口在A港口北偏西30方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75方向的C处,求:(1)C= ;(2)此时刻船与B港口之间的距离CB的长(结果保留根号)20(8分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价
7、进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?21(8分)解不等式组,并把它的解集表示在数轴上22(10分)如图,已知函数(x0)的图象经过点A、B,点B的坐标为(2,2)过点A作ACx轴,垂足为C,过点B作BDy轴,垂足为D,AC与BD交于点F一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E若AC=
8、OD,求a、b的值;若BCAE,求BC的长23(12分)车辆经过润扬大桥收费站时,4个收费通道 AB、C、D中,可随机选择其中的一个通过一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率24如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DFBE,求证:CECF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE45,请你利用(1)的结论证明:GEBEGD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B90,ABBC,E是AB上一点,且DCE45,B
9、E4,DE=10, 求直角梯形ABCD的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由OA=OB得OAB=OBA=25,根据三角形内角和定理计算出AOB=130,则根据圆周角定理得P=AOB,然后根据圆内接四边形的性质求解【详解】解:在圆上取点P,连接PA、PB.OA=OB,OAB=OBA=25,AOB=180225=130,P=AOB=65,ACB=180P=115. 故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键.2、A【解析】分析:详解:当axa2时,函数有最大值1,1x22x2,解得: ,即-1x3, a=-1或a+2=-1, a=-1或1,
10、故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.3、D【解析】过O作OCAB于点C,过O作ODx轴于点D,由切线的性质可求得OD的长,则可得OB的长,由垂径定理可求得CB的长,在RtOBC中,由勾股定理可求得OC的长,从而可求得O点坐标【详解】如图,过O作OCAB于点C,过O作ODx轴于点D,连接OB,O为圆心,AC=BC,A(0,2),B(0,8),AB=82=6,AC=BC=3,OC=83=5,O与x轴相切,OD=OB=OC
11、=5,在RtOBC中,由勾股定理可得OC=4,P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.4、D【解析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式【详解】阴影部分的面积相等,即甲的面积=a2b2,乙的面积=(a+b)(ab)即:a2b2=(a+b)(ab)所以验证成立的公式为:a2b2=(a+b)(ab)故选:D【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质5、D【解析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:由图象
12、得:对称轴是x=2,其中一个点的坐标为(1,0),图象与x轴的另一个交点坐标为(1,0)由图象可知:的解集即是y0的解集,x1或x1故选D6、D【解析】根据题意得出ABECDE,进而利用相似三角形的性质得出答案【详解】解:由题意可得:AE2m,CE0.5m,DC1.5m,ABCEDC,即,解得:AB6,故选:D【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出ABECDE是解答此题的关键7、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】数据0
13、.000000007用科学记数法表示为710-1故选A【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定8、C【解析】设用张铝片制作瓶身,则用张铝片制作瓶底,可作瓶身16x个,瓶底个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用张铝片制作瓶身,则用张铝片制作瓶底,依题意可列方程故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9、A【解析】试题解析:连接OE,OF,ON,OG,在矩形ABCD中,A=B=90,CD=AB=4,AD,AB,BC分别与O相切于E,F
14、,G三点,AEO=AFO=OFB=BGO=90,四边形AFOE,FBGO是正方形,AF=BF=AE=BG=2,DE=3,DM是O的切线,DN=DE=3,MN=MG,CM=5-2-MN=3-MN,在RtDMC中,DM2=CD2+CM2,(3+NM)2=(3-NM)2+42,NM=,DM=3+=,故选B考点:1.切线的性质;3.矩形的性质10、C【解析】根据中心对称图形的概念求解【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误故选C【点睛】本题主要考查了中心对称图形的概念:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 北京市 一中 中考 数学 最后 冲刺 浓缩 精华 解析
限制150内