2022-2023学年安徽省宿州市埇桥区教育集团重点中学中考数学全真模拟试卷含解析.doc
《2022-2023学年安徽省宿州市埇桥区教育集团重点中学中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省宿州市埇桥区教育集团重点中学中考数学全真模拟试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1已知二次函数y=x2+bx9图象上A、B两点关于原点对
2、称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()Ax=1Bx=Cx=1Dx=2计算 的结果为()A1BxCD3一、单选题如图中的小正方形边长都相等,若MNPMEQ,则点Q可能是图中的()A点AB点BC点CD点D4如图,在RtABC中,ACB=90,CDAB,垂足为D,AB=c,A=,则CD长为()Acsin2Bccos2CcsintanDcsincos5在实数|3|,2,0,中,最小的数是()A|3|B2C0D6对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解7下列调查中,最适合采用全面调查
3、(普查)方式的是( )A对重庆市初中学生每天阅读时间的调查B对端午节期间市场上粽子质量情况的调查C对某批次手机的防水功能的调查D对某校九年级3班学生肺活量情况的调查8实数的倒数是( )ABCD9如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:ACB;乙的路线为:ADEFB,其中E为AB的中点;丙的路线为:AIJKB,其中J在AB上,且AJJB若符号表示直线前进,则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为()A甲=乙=丙B甲乙丙C乙丙甲D丙乙甲10下列基本几何体中,三视图都是相同图形的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)
4、11如果a2b2=8,且a+b=4,那么ab的值是_12圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_13如果a+b=2,那么代数式(a)的值是_14将多项式因式分解的结果是 15若有意义,则x的范围是_16计算(5ab3)2的结果等于_三、解答题(共8题,共72分)17(8分)已知关于x的一元二次方程(a+c)x2+2bx+(ac)=0,其中a、b、c分别为ABC三边的长如果x=1是方程的根,试判断ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断ABC的形状,并说明理由;如果ABC是等边三角形,试求这个一元二次方程的根18(8分)如图,点P是菱形ABCD的对角线BD上一点,连
5、接CP并延长,交AD于E,交BA的延长线点F问:图中APD与哪个三角形全等?并说明理由;求证:APEFPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由19(8分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率20(8分)楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45,求楼房AB的高(注:坡度i
6、是指坡面的铅直高度与水平宽度的比)21(8分)解方程(1);(2)22(10分)某海域有A、B两个港口,B港口在A港口北偏西30方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75方向的C处,求:(1)C= ;(2)此时刻船与B港口之间的距离CB的长(结果保留根号)23(12分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角ABC为14,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因(参考数据:sin14=0.24,cos14=0.97,tan14=0.25)24如图,在平面直角
7、坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图,不论t如何变化,DEF始终为等边三角形(2)如图过点E作EQAB,交AC于点Q,设AEQ的面积为S,求S与t的函数关系式及t为何值时AEQ的面积最大?求出这个最大值(3)在(2)的条件下,当AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标
8、,若不存在请说明理由?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴【详解】解:A在反比例函数图象上,可设A点坐标为(a,)A、B两点关于原点对称,B点坐标为(a,)又A、B两点在二次函数图象上,代入二次函数解析式可得:,解得:或,二次函数对称轴为直线x=故选D【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系2、A【解析】根据同分母分式的加减运算法则计算可
9、得【详解】原式=1,故选:A【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则3、D【解析】根据全等三角形的性质和已知图形得出即可【详解】解:MNPMEQ,点Q应是图中的D点,如图,故选:D【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等4、D【解析】根据锐角三角函数的定义可得结论.【详解】在RtABC中,ACB=90,AB=c,A=a,根据锐角三角函数的定义可得sin= ,BC=csin,A+B=90,DCB+B=90,DCB=A=在RtDCB中,CDB=90,cosDCB= ,CD=BCcos=
10、csincos,故选D5、B【解析】直接利用利用绝对值的性质化简,进而比较大小得出答案【详解】在实数|-3|,-1,0,中,|-3|=3,则-10|-3|,故最小的数是:-1故选B【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键6、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解7、D【解析
11、】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D8、D【解析】因为,所以的倒数是.故选D.9、A【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似而且图2三角形全等,图3三角形相似详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE AE=BE=AB,AD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 安徽省 宿州市 埇桥区 教育 集团 重点中学 中考 数学 模拟 试卷 解析
限制150内