《2022-2023学年广东省深圳市重点达标名校中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省深圳市重点达标名校中考五模数学试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为()ABC6D22郑州地铁号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好
2、选择从同一个口进出的概率是()ABCD3一、单选题如图,ABC中,AB4,AC3,BC2,将ABC绕点A顺时针旋转60得到AED,则BE的长为()A5B4C3D24对于非零的两个实数、,规定,若,则的值为( )ABCD5如图,AB是O的弦,半径OCAB 于D,若CD=2,O的半径为5,那么AB的长为()A3B4C6D86实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )Aa+b0Ba-b0C7的绝对值是()A8B8CD8在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )ABCD9如图,ABC内接于O,AD为O的直径,交BC于点E,若DE=2,OE=3,则tanACBtanA
3、BC=( )A2B3C4D510如图,中,E是BC的中点,设,那么向量用向量表示为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中,二次函数y=ax2+c(a0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是_12因式分解:4ax24ay2=_13如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,SAFD=9,则SEFC等于_14如图,在矩形ABCD中,AD=5,AB=4,E是BC上的一点,BE=3,DFAE,垂足为F,则tanFDC=_15因式分解:9a3bab_16若正多边形的一个内角等于120,则这个正
4、多边形的边数是_17分解因式:8a38a2+2a=_三、解答题(共7小题,满分69分)18(10分)先化简,再求值:(a),其中a=3tan30+1,b=cos4519(5分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲50乙60(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最
5、大?20(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值21(10分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60,眼睛离地面的距离ED为1.5米试帮助小华求出旗杆AB的高度(结果精确到0.1米,).22(10分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测
6、试,并对成绩进行了统计,绘制出如下的统计图和图,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为 ,图中m的值为 ;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标23(12分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180,得到新的抛物线C(1)求抛物线C的函数表达式;(2)若抛物线C与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围(
7、3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C上的对应点P,设M是C上的动点,N是C上的动点,试探究四边形PMPN能否成为正方形?若能,求出m的值;若不能,请说明理由24(14分)如图,在平面直角坐标xOy中,正比例函数ykx的图象与反比例函数y的图象都经过点A(2,2)(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据题意作出合适的辅助线,可知阴影部分的面积
8、是BCD的面积减去BOE和扇形OEC的面积【详解】由题意可得,BC=CD=4,DCB=90,连接OE,则OE=BC,OEDC,EOB=DCB=90,阴影部分面积为: = =6-,故选C【点睛】本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答2、C【解析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE一共有25种等可能的情况,恰好选择从同一个口进出的有
9、5种情况,恰好选择从同一个口进出的概率为=,故选C【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比3、B【解析】根据旋转的性质可得AB=AE,BAE=60,然后判断出AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB【详解】解:ABC绕点A顺时针旋转60得到AED,AB=AE,BAE=60,AEB是等边三角形,BE=AB,AB=1,BE=1故选B【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利
10、用了旋转前后对应边相等以及旋转角的定义4、D【解析】试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.考点:1.新运算;2.分式方程.5、D【解析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1【详解】连接OAO的半径为5,CD=2,OD=5-2=3,即OD=3;又AB是O的弦,OCAB,AD=AB;在直角三角形ODC中,根据勾股定理,得AD=4,AB=1故选D【点睛】本题考查了垂径定理、勾股定理解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度
11、6、C【解析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案【详解】解:由数轴,得b-1,0a1A、a+b0,故A错误;B、a-b0,故B错误;C、0,故C符合题意;D、a21b2,故D错误;故选C【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b-1,0a1是解题关键,又利用了有理数的运算7、C【解析】根据绝对值的计算法则解答如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数a;当a是零时,a的绝对值是零【详解】解:故选【点睛】此题重点考查学生对绝对值的理解,熟练掌握绝对
12、值的计算方法是解题的关键.8、C【解析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形故此选项错误;B、不是轴对称图形,也不是中心对称图形故此选项错误;C、是轴对称图形,也是中心对称图形故此选项正确;D、是轴对称图形,但不是中心对称图形故此选项错误故选C【点睛】考点:1、中心对称图形;2、轴对称图形9、C【解析】如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案【详解】如图,连接BD、CD在和中,同理
13、可得:,即为O的直径故选:C【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键10、A【解析】根据,只要求出即可解决问题.【详解】解:四边形ABCD是平行四边形,故选:A.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】设正方形的对角线OA长为1m,根据正方形的性质则可得出B、C坐标,代入二次函数y=ax1+c中,即可求出a和c,从而求积【详解】设正方形的对角线OA长为1m,则B(m,m),C(m,m),A(0,1m);把A,
14、C的坐标代入解析式可得:c=1m,am1+c=m,代入得:am1+1m=m,解得:a=-,则ac=-1m=-1考点:二次函数综合题12、4a(xy)(x+y)【解析】首先提取公因式4a,再利用平方差公式分解因式即可【详解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y)故答案为4a(x-y)(x+y)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键13、1【解析】由于四边形ABCD是平行四边形,所以得到BCAD、BC=AD,而CE=2EB,由此即可得到AFDCFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解【详解】解:四边形ABCD是平行
15、四边形,BCAD、BC=AD,而CE=2EB,AFDCFE,且它们的相似比为3:2,SAFD:SEFC=()2,而SAFD=9,SEFC=1故答案为1【点睛】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解14、【解析】首先根据矩形的性质以及垂线的性质得到FDCABE,进而得出tanFDCtanAEB,即可得出答案.【详解】DFAE,垂足为F,AFD90,ADFDAF90,ADFCDF90,DAFCDF,DAFAEB,FDCABE,tanFDCtanAEB,在矩形ABCD中,AB4,E是BC上的一点,BE3,tanFDC.故答案为.
16、【点睛】本题主要考查了锐角三角函数的关系以及矩形的性质,根据已知得出tanFDCtanAEB是解题关键.15、ab(3a+1)(3a-1)【解析】试题分析:原式提取公因式后,利用平方差公式分解即可试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1)考点: 提公因式法与公式法的综合运用16、6【解析】试题分析:设所求正n边形边数为n,则120n=(n2)180,解得n=6;考点:多边形内角与外角17、2a(2a1)2【解析】提取2a,再将剩下的4a2-4a+1用完全平方和公式配出(2a1)2,即可得出答案.【详解】原式=2a(4a2-4a+1)=2a(2a1)2.【点睛】本题考查了因
17、式分解,仔细观察题目并提取公因式是解决本题的关键.三、解答题(共7小题,满分69分)18、,【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a的值,代入计算即可求出值解:原式=,当,原式=. “点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式19、(1)10750;(2);(3)最大利润为10750元.【解析】(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式
18、进行求解即可;(2)根据题意,分两种情况进行讨论:0m200;200m400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论.【详解】(1)甲种T恤进货250件乙种T恤进货量为:400-250=150件故由题意得,;(2);故.(3)由题意,综上,最大利润为10750元.【点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键20、(1)300米/分;(2)y=300x+3000;(3)分【解析】(1)由图象看出所需时间再根据路程时间=速度算出小张骑自行车的速度(2)根据由小张的速度可知:B
19、(10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD的解析式,列出方程,求解即可.【详解】解:(1)由题意得:(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B(10,0),设直线AB的解析式为:y=kx+b,把A(6,1200)和B(10,0)代入得: 解得: 小张停留后再出发时y与x之间的函数表达式; (3)小李骑摩托车所用的时间: C(6,0),D(9,2400),同理得:CD的解析式为:y=800x4800,则 答:小张与小李相遇时x的值是分【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.2
20、1、11.9米【解析】先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论【详解】BD=CE=6m,AEC=60,AC=CEtan60=6=661.73210.4m,AB=AC+DE=10.4+1.5=11.9m答:旗杆AB的高度是11.9米.22、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标【解析】分析:()根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可; ()根据平均数、众数、中位数的定义求解可得; ()总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得详解:()本次抽
21、测的男生人数为1020%=50,m%=100%=1%,所以m=1 故答案为50、1; ()平均数为=5.16次,众数为5次,中位数为=5次; ()350=2答:估计该校350名九年级男生中有2人体能达标点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据23、(1);(2)2m;(1)m=6或m=1【解析】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到,由题意,抛物线C与抛物线C在
22、y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(1)情形1,四边形PMPN能成为正方形作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,推出PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,可得M(m+2,m2),理由待定系数法即可解决问题;情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),利用待定系数法即可解决问题【详解】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,抛物线C的函数表达式为(2)由题意抛物线C的顶点坐标为(2m,4
23、),设抛物线C的解析式为,由,消去y得到 ,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2m,满足条件的m的取值范围为2m(1)结论:四边形PMPN能成为正方形理由:1情形1,如图,作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,M(m+2,m2),点M在上,解得m=1或1(舍弃),m=1时,四边形PMPN是正方形情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),把M(m2,2m)代入中,解得m=6或0(舍弃),m=6时,四边形PMPN是正方形综上所述:m=6或m=1时,四边形PMPN是正方形24、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将ABC的面积转化为OBC的面积试题解析:()把代入反比例函数表达式,得,解得,反比例函数表达式为,把代入正比例函数,得,解得,正比例函数表达式为()直线由直线向上平移个单位所得,直线的表达式为,由,解得或,在第四象限,连接,
限制150内