直流调速控制系统.pptx
《直流调速控制系统.pptx》由会员分享,可在线阅读,更多相关《直流调速控制系统.pptx(361页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、根据直流电机转速方程 q 直流调速方法nUIRKe式中 转速(r/min);电枢电压(V);电枢电流(A);电枢回路总电阻();励磁磁通(Wb);由电机结构决定的电动势常数。(1-1)第1页/共361页 由式(1-1)可以看出,有三种方法调节电动机的转速:(1)调节电枢供电电压 U;(2)减弱励磁磁通 ;(3)改变电枢回路电阻 R。第2页/共361页(1)调压调速工作条件:保持励磁 =N;保持电阻 R=Ra调节过程:改变电压 UN U U n,n0 调速特性:转速下降,机械特性曲线平行下移。nn0OIILUNU 1U 2U 3nNn1n2n3调压调速特性曲线第3页/共361页(2)调阻调速工作
2、条件:保持励磁 =N;保持电压 U=UN;调节过程:增加电阻 Ra R R n,n0不变;调速特性:转速下降,机械特性曲线变软。nn0OIILR aR 1R 2R 3nNn1n2n3调阻调速特性曲线第4页/共361页(3)调磁调速工作条件:保持电压 U=UN;保持电阻 R=R a;调节过程:减小励磁 N n,n0 调速特性:转速上升,机械特性曲线变软。nn0OTeTL N 1 2 3nNn1n2n3调磁调速特性曲线第5页/共361页 三种调速方法的性能与比较 对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不
3、大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。因此,自动控制的直流调速系统往往以调压调速为主。第6页/共361页第第1章章 闭环控制的直流调速系统闭环控制的直流调速系统 本章着重讨论基本的闭环控制系统及其分析与设计方法。第7页/共361页本章提要1.1 直流调速系统用的可控直流电源1.2 晶闸管-电动机系统(V-M系统)的主要问题1.3 直流脉宽调速系统的主要问题1.4 反馈控制闭环直流调速系统的稳态分析和设计1.5 反馈控制闭环直流调速系统的动态分析和设计1.6 比例积分控制规律和无静差调速系统第8页/共361页1.1 直流调速系统用的可控直流电源 根据前面分析,
4、调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。本节介绍几种主要的可控直流电源。第9页/共361页常用的可控直流电源有以下三种旋转变流机组用交流电动机和直流发电机组成机组,以获得可调的直流电压。静止式可控整流器用静止式的可控整流器,以获得可调的直流电压。直流斩波器或脉宽调制变换器用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。第10页/共361页1.1.1 旋转变流机组图1-1旋转变流机组供电的直流调速系统(G-M系统)第11页/共361页 G-M系统工作原理 由原动机(柴油机、交流异步或同步电动机)拖动直流
5、发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电,调节G 的励磁电流 if 即可改变其输出电压 U,从而调节电动机的转速 n。这样的调速系统简称G-M系统,国际上通称Ward-Leonard系统。第12页/共361页 G-M系统特性n第I象限第IV象限OTeTL-TLn0n1n2第II象限第III象限图1-2 G-M系统机械特性第13页/共361页 1.1.2 静止式可控整流器图1-3 晶闸管可控整流器供电的直流调速系统(V-M系统)第14页/共361页 V-M系统工作原理 晶闸管-电动机调速系统(简称V-M系统,又称静止的Ward-Leonard系统),图中VT是晶闸管可控整流
6、器,通过调节触发装置 GT 的控制电压 Uc 来移动触发脉冲的相位,即可改变整流电压Ud,从而实现平滑调速。第15页/共361页 V-M系统的特点 与G-M系统相比较:晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。晶闸管可控整流器的功率放大倍数在10 4 以上,其门极电流可以直接用晶体管来控制,不再像直流发电机那样需要较大功率的放大器。在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级,这将大大提高系统的动态性能。第16页/共361页 V-M系统的问题由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。晶闸管对过电压、过电流和
7、过高的dV/dt与di/dt 都十分敏感,若超过允许值会在很短的时间内损坏器件。由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。第17页/共361页1.1.3 直流斩波器或脉宽调制变换器 在干线铁道电力机车、工矿电力机车、城市有轨和无轨电车和地铁电机车等电力牵引设备上,常采用直流串励或复励电动机,由恒压直流电网供电,过去用切换电枢回路电阻来控制电机的起动、制动和调速,在电阻中耗电很大。第18页/共361页a)原理图b)电压波形图tOuUsUdTton控制电路M 1.直流斩波器的基本结构图1-5 直流斩波器-电动机系统的原理图和电压波形 第19页/共361页 2.斩波
8、器的基本控制原理 在原理图中,VT 表示电力电子开关器件,VD 表示续流二极管。当VT 导通时,直流电源电压 Us 加到电动机上;当VT 关断时,直流电源与电机脱开,电动机电枢经 VD 续流,两端电压接近于零。如此反复,电枢端电压波形如图1-5b,好像是电源电压Us在ton 时间内被接上,又在 T ton 时间内被斩断,故称“斩波”。第20页/共361页这样,电动机得到的平均电压为 3.输出电压计算(1-2)式中 T 晶闸管的开关周期;ton 开通时间;占空比,=ton/T=ton f ;其中 f 为开关频率。第21页/共361页 为了节能,并实行无触点控制,现在多用电力电子开关器件,如快速晶
9、闸管、GTO、IGBT等。采用简单的单管控制时,称作直流斩波器第22页/共361页 4.斩波电路三种控制方式根据对输出电压平均值进行调制的方式不同而划分,有三种控制方式:T 不变,变 ton 脉冲宽度调制(PWM);ton不变,变 T 脉冲频率调制(PFM);ton和 T 都可调-混合型。第23页/共361页 PWM系统的优点(1)主电路线路简单,需用的功率器件少;(2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小;(3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右;(4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;第24页/共361页PWM系统的
10、优点(续)(5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;(6)直流电源采用不控整流时,电网功率因数比相控整流器高。第25页/共361页小 结 三种可控直流电源,V-M系统在上世纪6070年代得到广泛应用,目前主要用于大容量系统。直流PWM调速系统作为一种新技术,发展迅速,应用日益广泛,特别在中、小容量的系统中,已取代V-M系统成为主要的直流调速方式。返回目录第26页/共361页1.2 晶闸管-电动机系统(V-M系统)的主要问题 本节讨论V-M系统的几个主要问题:(1)触发脉冲相位控制;(2)电流脉动及其波形的连续与断续;(3)抑制电流脉动的措
11、施;(4)晶闸管-电动机系统的机械特性;(5)晶闸管触发和整流装置的放大系数和 传递函数。第27页/共361页 在如图可控整流电路中,调节触发装置 GT 输出脉冲的相位,即可很方便地改变可控整流器 VT 输出瞬时电压 ud 的波形,以及输出平均电压 Ud 的数值。OOOOO1.2.1 触发脉冲相位控制第28页/共361页Ud0IdE 等效电路分析 如果把整流装置内阻移到装置外边,看成是其负载电路电阻的一部分,那么,整流电压便可以用其理想空载瞬时值 ud0 和平均值 Ud0 来表示,相当于用图示的等效电路代替实际的整流电路。图1-7 V-M系统主电路的等效电路图 第29页/共361页 式中 电动
12、机反电动势;整流电流瞬时值;主电路总电感;主电路等效电阻;且有 R=Rrec+Ra+RL;EidLR 瞬时电压平衡方程(1-3)第30页/共361页 对ud0进行积分,即得理想空载整流电压平均值Ud0。用触发脉冲的相位角 控制整流电压的平均值Ud0是晶闸管整流器的特点。Ud0与触发脉冲相位角 的关系因整流电路的形式而异,对于一般的全控整流电路,当电流波形连续时,Ud0=f()可用下式表示第31页/共361页 式中 从自然换相点算起的触发脉冲控制角;=0 时的整流电压波形峰值;交流电源一周内的整流电压脉波数;对于不同的整流电路,它们的数值如表1-1所示。Umm 整流电压的平均值计算(1-5)第3
13、2页/共361页表1-1 不同整流电路的整流电压值*U2 是整流变压器二次侧额定相电压的有效值。第33页/共361页 整流与逆变状态当 0 0,晶闸管装置处于整流状态,电功率从交流侧输送到直流侧;当/2 max 时,Ud0 0,装置处于有源逆变状态,电功率反向传送。为避免逆变颠覆,应设置最大的移相角限制。相控整流器的电压控制曲线如下图 第34页/共361页图1-8 相控整流器的电压控制曲线 O 逆变颠覆限制 通过设置控制电压限幅值,来限制最大触发角。第35页/共361页1.2.2 电流脉动及其波形的连续与断续 由于电流波形的脉动,可能出现电流连续和断续两种情况,这是V-M系统不同于G-M系统的
14、又一个特点。当V-M系统主电路有足够大的电感量,而且电动机的负载也足够大时,整流电流便具有连续的脉动波形。当电感量较小或负载较轻时,在某一相导通后电流升高的阶段里,电感中的储能较少;等到电流下降而下一相尚未被触发以前,电流已经衰减到零,于是,便造成电流波形断续的情况。第36页/共361页V-M系统主电路的输出图1-9 V-M系统的电流波形a)电流连续b)电流断续OuaubucudOiaibicictEUdtOuaubucudOiaibicicEUdudttudidid第37页/共361页1.2.3 抑制电流脉动的措施 在V-M系统中,脉动电流会产生脉动的转矩,对生产机械不利,同时也增加电机的发
15、热。为了避免或减轻这种影响,须采用抑制电流脉动的措施,主要是:设置平波电抗器;增加整流电路相数;采用多重化技术。第38页/共361页(1)平波电抗器的设置与计算单相桥式全控整流电路 三相半波整流电路 三相桥式整流电路 (1-6)(1-8)(1-7)第39页/共361页(2)多重化整流电路 如图电路为由2个三相桥并联而成的12脉波整流电路,使用了平衡电抗器来平衡2组整流器的电流。并联多重联结的12脉波整流电路M第40页/共361页1.2.4 晶闸管-电动机系统的机械特性 当电流连续时,V-M系统的机械特性方程式为 式中 Ce=KeN 电机在额定磁通下的电动势系数。式(1-9)等号右边 Ud0 表
16、达式的适用范围如第1.2.1节中所述。(1-9)第41页/共361页(1)电流连续情况 图1-10 电流连续时V-M系统的机械特性 n=Id R/CenIdILO上述分析说明:只要电流连续,V-M系统就可以看成是一个线性系统。改变控制角,得一族平行直线,这和G-M系统的特性很相似,如图1-10所示。图中电流较小的部分画成虚线,表明这时电流波形可能断续,公式(1-9)已经不适用了。第42页/共361页 当电流断续时,由于非线性因素,机械特性方程要复杂得多。以三相半波整流电路构成的V-M系统为例,电流断续时机械特性须用下列方程组表示(2)电流断续情况式中 ;一个电流脉波的导通角。第43页/共361
17、页(3)电流断续机械特性计算 当阻抗角 值已知时,对于不同的控制角,可用数值解法求出一族电流断续时的机械特性。对于每一条特性,求解过程都计算到 =2/3为止,因为 角再大时,电流便连续了。对应于 =2/3 的曲线是电流断续区与连续区的分界线。第44页/共361页图1-11 完整的V-M系统机械特性(4)V-M系统机械特性第45页/共361页(5)V-M系统机械特性的特点 图1-11绘出了完整的V-M系统机械特性,分为电流连续区和电流断续区。由图可见:当电流连续时,特性还比较硬;断续段特性则很软,而且呈显著的非线性,理想空载转速翘得很高。第46页/共361页1.2.5 晶闸管触发和整流装置的放大
18、系数和 传递函数 在进行调速系统的分析和设计时,可以把晶闸管触发和整流装置当作系统中的一个环节来看待。应用线性控制理论进行直流调速系统分析或设计时,须事先求出这个环节的放大系数和传递函数。第47页/共361页 实际的触发电路和整流电路都是非线性的,只能在一定的工作范围内近似看成线性环节。如有可能,最好先用实验方法测出该环节的输入-输出特性,即曲线,图1-13是采用锯齿波触发器移相时的特性。设计时,希望整个调速范围的工作点都落在特性的近似线性范围之中,并有一定的调节余量。第48页/共361页 晶闸管触发和整流装置的放大系数的计算 晶闸管触发和整流装置的放大系数可由工作范围内的特性率决定,计算方法
19、是图1-13 晶闸管触发与整流装置的输入-输出特性和的测定(1-12)第49页/共361页 如果不可能实测特性,只好根据装置的参数估算。例如:设触发电路控制电压的调节范围为 Uc=010V 相对应的整流电压的变化范围是 Ud=0220V 可取 Ks=220/10=22 晶闸管触发和整流装置的放大系数估算第50页/共361页 晶闸管触发和整流装置的传递函数 在动态过程中,可把晶闸管触发与整流装置看成是一个纯滞后环节,其滞后效应是由晶闸管的失控时间引起的。众所周知,晶闸管一旦导通后,控制电压的变化在该器件关断以前就不再起作用,直到下一相触发脉冲来到时才能使输出整流电压发生变化,这就造成整流电压滞后
20、于控制电压的状况。第51页/共361页u2udUctt10Uc1Uc21tt00022Ud01Ud02TsOOOO(1)晶闸管触发与整流失控时间分析图1-14 晶闸管触发与整流装置的失控时间第52页/共361页 显然,失控制时间是随机的,它的大小随发生变化的时刻而改变,最大可能的失控时间就是两个相邻自然换相点之间的时间,与交流电源频率和整流电路形式有关,由下式确定(1-13)(2)最大失控时间计算式中 交流电流频率;一周内整流电压的脉冲波数。fm第53页/共361页 (3)Ts 值的选取 相对于整个系统的响应时间来说,Ts 是不大的,在一般情况下,可取其统计平均值 Ts=Tsmax/2,并认为
21、是常数。也有人主张按最严重的情况考虑,取Ts=Tsmax。表1-2列出了不同整流电路的失控时间。表1-2 各种整流电路的失控时间(f=50Hz)第54页/共361页 用单位阶跃函数表示滞后,则晶闸管触发与整流装置的输入-输出关系为按拉氏变换的位移定理,晶闸管装置的传递函数为(1-14)(4)传递函数的求取第55页/共361页 由于式(1-14)中包含指数函数,它使系统成为非最小相位系统,分析和设计都比较麻烦。为了简化,先将该指数函数按台劳级数展开,则式(1-14)变成 (1-15)第56页/共361页(5)近似传递函数 考虑到 Ts 很小,可忽略高次项,则传递函数便近似成一阶惯性环节。(1-1
22、6)第57页/共361页 (6)晶闸管触发与整流装置动态结构Uc(s)Ud0(s)Uc(s)Ud0(s)(a)准确的(b)近似的图1-15 晶闸管触发与整流装置动态结构图ssss返回目录第58页/共361页1.3 直流脉宽调速系统的主要问题 自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制(PWM)的高频开关控制方式形成的脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,即直流PWM调速系统。第59页/共361页本节提要(1)PWM变换器的工作状态和波形;(2)直流PWM调速系统的机械特性;(3)PWM控制与变换器的数学模型;(4)电能回馈与泵升电压的限制。第60页/共361页
23、1.3.1 PWM变换器的工作状态和电压、电流波形 PWM变换器的作用是:用PWM调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压系列,从而可以改变平均输出电压的大小,以调节电机转速。PWM变换器电路有多种形式,主要分为不可逆与可逆两大类,下面分别阐述其工作原理。第61页/共361页1.不可逆PWM变换器(1)简单的不可逆PWM变换器 简单的不可逆PWM变换器-直流电动机系统主电路原理图如图1-16所示,功率开关器件可以是任意一种全控型开关器件,这样的电路又称直流降压斩波器。第62页/共361页图1-16 简单的不可逆PWM变换器-直流电动机系统 VDUs+UgCVTidM+
24、_E(a)电路原理图 M 主电路结构21第63页/共361页 图中:Us为直流电源电压,C为滤波电容器,VT为功率开关器件,VD为续流二极管,M 为直流电动机,VT 的栅极由脉宽可调的脉冲电压系列Ug驱动。第64页/共361页工作状态与波形在一个开关周期内,当0 t ton时,Ug为正,VT导通,电源电压通过VT加到电动机电枢两端;当ton t T 时,Ug为负,VT关断,电枢失去电源,经VD续流。U,iUdEidUsttonT0图1-16b 电压和电流波形O第65页/共361页电机两端得到的平均电压为(1-17)式中 =ton/T 为 PWM 波形的占空比,输出电压方程 改变 (0 1)即可
25、调节电机的转速,若令=Ud/Us为PWM电压系数,则在不可逆 PWM 变换器 =(1-18)第66页/共361页(2)有制动的不可逆PWM变换器电路 在简单的不可逆电路中电流不能反向,因而没有制动能力,只能作单象限运行。需要制动时,必须为反向电流提供通路,如图1-17a所示的双管交替开关电路。当VT1 导通时,流过正向电流+id,VT2 导通时,流过 id 。应注意,这个电路还是不可逆的,只能工作在第一、二象限,因为平均电压 Ud 并没有改变极性。第67页/共361页图1-17a 有制动电流通路的不可逆PWM变换器 主电路结构M+-VD2Ug2Ug1VT2VT1VD1E4123CUs+MVT2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直流 调速 控制系统
限制150内