二元函数微积分——偏导数和全微分.ppt





《二元函数微积分——偏导数和全微分.ppt》由会员分享,可在线阅读,更多相关《二元函数微积分——偏导数和全微分.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二元函数微积分偏导数和全微分一、区域一、区域二、二元函数的概念二、二元函数的概念二元函数的基本概念二元函数的基本概念 二元函数的概念二元函数的概念一元函数一元函数二元函数二元函数定义域定义域自变量个数自变量个数一个:一个:两个:两个:在数轴上讨论在数轴上讨论(区间)(区间)在平面上讨论在平面上讨论(区域)(区域)一、一、偏导数概念及其计算偏导数概念及其计算二二、高阶偏导数、高阶偏导数 偏导数定义:定义:在点存在,的偏导数,记为的某邻域内则称此极限为函数极限设函数注意注意:同样可定义对同样可定义对同样可定义对同样可定义对 y y 的偏导数的偏导数的偏导数的偏导数若函数 z=f(x,y)在域 D
2、内每一点(x,y)处对 x则该偏导数称为偏导函数,也简称为偏导数偏导数,记为或 y 偏导数存在,例如例如,三元函数三元函数 u=f(x,y,z)在点在点(x,y,z)处对处对 x 的的偏导数的概念可以推广到二元以上的函数偏导数的概念可以推广到二元以上的函数偏导数的概念可以推广到二元以上的函数偏导数的概念可以推广到二元以上的函数 .偏导数定义为(请自己写出)例例1.求求解:解:在点(1,2)处的偏导数.由偏导数的定义可以看出,要求二元函数对某个自变量的偏导数,只需将另一个自变量看做常量,然后利用一元函数求导公式和求导法则即可。例例2.2.设设设设证证:例例3.求的偏导数.解解:求证偏导数记号是一
3、个例例4.4.已知理想气体的状态方程已知理想气体的状态方程已知理想气体的状态方程已知理想气体的状态方程求证:证证:说明说明:(R 为常数),不能看作分子与分母的商!此例表明,整体记号,练练 习习二、高阶偏导数二、高阶偏导数设 z=f(x,y)在域 D 内存在连续的偏导数若这两个偏导数仍存在偏导数,若这两个偏导数仍存在偏导数,则称它们是则称它们是z=f(x,y)的的二阶偏导数二阶偏导数.按求导顺序不同按求导顺序不同,有下列四个二阶偏导有下列四个二阶偏导数:类似可以定义更高阶的偏导数类似可以定义更高阶的偏导数类似可以定义更高阶的偏导数类似可以定义更高阶的偏导数.例如,例如,z=f(x,y)关于 x 的三阶偏导数为z=f(x,y)关于 x 的 n 1 阶偏导数,再关于 y 的一阶偏导数为解:解:例例6.6.证明函数证明函数证明函数证明函数满足拉普拉斯证:证:利用对称性,有方程内容小结1.偏导数的概念及有关结论 定义;记号2.偏导数的计算方法 求一点处偏导数的方法先求后代(把其他变量视为常数)利用定义 求高阶偏导数的方法逐次求导法练练 习习此此课件下件下载可自行可自行编辑修改,修改,仅供参考!供参考!感感谢您的支持,我您的支持,我们努力做得更好!努力做得更好!谢谢!
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 函数 微积分 导数 微分

限制150内