质量管理与可靠性1045438.pptx
《质量管理与可靠性1045438.pptx》由会员分享,可在线阅读,更多相关《质量管理与可靠性1045438.pptx(100页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章质量控制常用技术第一部分:老七种工具1 质量控制的数理统计学基础n一、数据的种类1.计量值数据(长度、重量、电流、温度等。测量结果的数据可以是连续的,也可以是不连续的)计数值数据 不能连续取值的,只能以个数计算的数为计数值数据。(不合格品数、缺陷数)二、总体和样本n把所研究的对象的全体称为全及总体,也叫做母体或简称为总体。通常全及总体的单位数用N来表示,样本单位数称为样本容量,用n来表示。相对于N来说,n则是个很小的数。它可以是总体的几十分之一乃至几万分之一。三、数据特征值n数据特征值是数据分布趋势的一种度量。数据特征值可以分为两类。集中度:平均值、中位数、众数等;离散度:极差、平均偏差
2、、均方根偏差、标准偏差等。1.表示数据集中趋势的特征值(1)频数n计算各个值反复出现的次数,称之为频数。(2)算术平均值如果产品质量有n个测量数据xi(i=1,2,,n),平均值为:如果测量数据按大小分组,则平均值为(3)中位数n数据按大小顺序排列,排在中间的那个数称为中位数。用表示。当数据总数为奇数时,最中间的数就是;当数据总数为偶数时,中位数为中间两个数据的平均值。(4)众数n 众数是一组测量数据中出现次数(频数)最多的那个数值,一般用M0表示。2.表示数据离散程度的特征值(1)极差极差是一组测量数据中的最大值和最小值之差。通常用于表示不分组数据的离散度,用符号R表示。(2)平均偏差将每个
3、数据减去平均值,并把它们的差值的绝对值相加再除以测量数据的总个数,即得到平均偏差,用AD表示。(3)均方根偏差n均方根偏差是测量数据平均值之差的平方和被总测数平均,然后再求其平均值,用表示。n用均方根偏差作为的度量,可以直接比较两组数据的均方根偏差的大小就可看出两组数据离散程度的大小。(4)标准偏差n测量数据分布的离散最重要的度量是标准偏差,用S表示。对于大量生产的产品来说,不可能对全部产品进行检验,通常只对其中一部分产品(样本)进行检验。当把有限数量产品测量数据按标准方差的公式求得的样本方差和总体方差作一比较,会发现这个估计值将偏小。因此,必须用因子n/n-1乘上样本方差来修正,则样本标准方
4、差S2为n把样本标准方差开平方后,可得样本标准偏差为n当计算样本标准偏差时,随着样本大小n增大,便愈接近,则标准偏差估计值得误差将会缩小。数据的修整n过多的四舍五入会造成误差过大,可采取进位和舍弃机会均等的修整方法:n1)位数5,则:进位并舍去后面的数。n2)位数5,则:舍去,及后面的数。n3)位数5,则:na)后面的数为0或无数字,5前面的数为奇数进一、偶数舍去。nb)后面的数不全为零,5前面的数进一、舍去5和以后的数。n4)不得连续进行修整。序号平均数四舍五入后的平均数数值修整后的平均数1234567891012425125501247512500124001237512625126501
5、24751245012431255124812501240123812631265124812451242125512481250124012381262126512481245合计1249251249512493总平均1249251249512493四、最常见的概率分布正态分布n连续随机变量最重要的分布正态分布,表达形式式中,为总体的算术平均值;为总体的标准偏差;n如果我们令Z=(x-)/,那么我们可以得到正态密度函数标准化形式为f3f面积是全体变量的68.26落在的范围之内;95.46的变量是落在2界限之内;99.73的变量落在3界限之内。但是,必须特别注意,在同样的两个已知界限内,对于样
6、本界限内所占的百分比同总体总体界线内所占的百分比可能不很一致。这个差别非常重要,它构成了假设检验的基本原理。老七种工具之一:调查表n 调查表是为了调查客观事物、产品和工作质量,或为了分层收集数据而设计的图表。即把产品可能出现的情况及其分类预先列成调查表,则检查产品时只需在相应分类中进行统计。n 为了能够获得良好的效果、可比性、全面性和准确性,调查表格设计应简单明了,突出重点;应填写方便,符号好记;调查、加工和检查的程序与调查表填写次序应基本一致,填写好的调查表要定时、准时更换并保存,数据要便于加工整理,分析整理后及时反馈。n1.1.不良项目调查表不良项目调查表n 质量管理中“良”与“不良”,是
7、相对于标准、规格、公差而言的。一个零件和产品不符合标准、规格、公差的质量项目叫不良项目,也称不合格项目。n如表41表表4-1 不良品项目调查表不良品项目调查表项目日期交验数合格数不良品不良品类型废 品数次品数返修品数废品类型次品类型返修品类型良品率(%)n2.缺陷位置调查表缺陷位置调查表缺陷位置调查表宜与措施相联系,能充分反映缺陷发生的位置,便于研究缺陷为什么集中在那里,有助于进一步观察、探讨发生的原因。缺陷位置调查表可根据具体情况画出各种不同的缺陷位置调查表,图上可以划区,以便进行分层研究和对比分析。如表42。n3.3.频数调查表频数调查表 为了做直方图而需经过收集数据、分组、统计频数、计算
8、、绘图等步骤。如果运用频数调查表,那就在收集数据的同时,直接进行分解和统计频数。n4.4.检查确认调查表检查确认调查表 检查确认调查表是对所做工作和加工的质量进行总的检查与确认。在有限的时间内检查太多的项目,稍有疏忽,同一项目可能检查两次,而有的项目可能漏检。因此,当检查项目较多时(100项以上),为了不致弄错或遗漏,预先把应检查的项目统统列出来,然后按顺序,每检查一项在相应处作记号,防止遗漏。n5.5.作业抽样调查表作业抽样调查表作业抽样是分析作业时间的方法。它将全部时间分为加工、准备、空闲的时间,然后通过任意时刻,反复多次瞬间观测作业的内容,进而调查各段时间占全部时间的百分比。目前,调查表
9、广泛应用于各行各业,调查表的形式也多种多样。老七种工具之二:分层法老七种工具之二:分层法分层就是把所收集的数据进行合理的分类,把性质相同、在同一生产条件下收集的数据归在一起,把划分的组叫做“层”,通过数据分层把错综复杂的影响质量因素分析清楚。当分层分不好时,会使图形的规律性隐蔽起来,还会造成假象。例如:作直方图分层不好时,就会出现双峰型和平顶型。排列图分层不好时,无法区分主要因素和次要因素,也无法对主要因素作进一步分析。散布图分层不好时,会出现几簇互不关连的散点群。控制图分层不好时,无法反映工序的真实变化,不能找出数据异常的原因,不能作出正确的判断。因果图分层不好时,不能搞清大原因、中原因、小
10、原因之间的真实传递途径。n例4-1:n在柴油机装配中经常发生气缸垫漏气现象,为解决这一质量问题,对该工序进行现场统计。n(1)收集数据:n=50,漏气数f=19,漏气率 p=38%(2)分析原因通过分析,漏气可能有两个原因:a)该工序涂密封剂的工人A、B、C三人的操作方法有差异;b)气缸垫分别由甲、乙两厂供给,原材料有差异。因此,作分层表n分层法操作者操作者漏气数漏气数不漏气数不漏气数漏气发生率漏气发生率A6130.32B390.25C1090.53合计合计19310.38协作厂协作厂漏气数漏气数不漏气数不漏气数漏气发生率漏气发生率甲厂甲厂9140.39乙厂乙厂10170.37合计合计1931
11、0.38 由分层表,人们似乎以为,降低气缸漏气率的办法可采用乙厂提供的气缸垫和工人B的操作方法。但实践结果表明,这样做漏气率非但没有降低,反而增加到43%,这是什么原因呢?为此,进行更细致的综合分析,如表4-5。工厂工厂合计合计甲甲乙乙操操作作者者A漏气漏气606不漏气不漏气21113B漏气漏气033不漏气不漏气549C漏气漏气3710不漏气不漏气729合计合计漏气漏气91019不漏气不漏气141731总计总计232750n从表45再次提出降低气缸漏气率的措施是:使用甲厂提供的气缸垫时,要采用工人B的操作方法。使用乙厂提供的气缸垫时,要采用工人A的操作方法。实践表明,上述的分层法及采用的措施十
12、分有效,漏气率大大降低。老七种工具之三:直方图老七种工具之三:直方图n直方图法是适用于对大量计量值数据进行整理加工,找出其统计规律,即分析数据分布的形态,以便对其总体的分布特征进行推断,对工序或批量产品的质量水平及其均匀程度进行分析的方法。1.1.作直方图的方法步骤如下作直方图的方法步骤如下n(1)(1)收集数据收集数据一般收集数据都要随机抽取50个以上质量特性数据,最好是100个以上的数据,并按先后顺序排列。表46是收集到的某产品数据,其样本大小用n=100表示。n(2)(2)找出数据中的最大值,最小值和极差。找出数据中的最大值,最小值和极差。数据中的最大值用xmax表示,最小值用xmin表
13、示,极差用R表示。例4-2n某项目统计数据为:xmax=63,xmin=38,极差R=xmax-xmin=63-38=25。区间xmax,xmin称为数据的散布范围组号组号实测数据实测数据maxmin16155633949555055555063392443850485350505050525338348525252485545495054554544550555148545355605560455564347505050634740436340654534543484345435353544374947484048454752485052408473854504749505551435543
14、945545555476350495560634510455247555563504645476245n(3)确定组数。组数常用符号k表示。k与数据数多少有关。数据多,多分组;数据少,少分组。例4-2中100个数据,常分为10组左右。也有人用这样一个经验公式计算组数:k=1+3.31(logn)例4-2中n=100,故:k=1+3.31(1ogn)=1+3.31(log100)=7.628 一般由于正态分布为对称形,故常取k为奇数。所以例4-2中取k=9。n(4)(4)求出组距求出组距(h h)。组距即组与组之间的间隔,等于极差除以组数,即组距n(5)(5)确定组界确定组界为了确定边界,通常从
15、最小值开始。先把最小值放在第一组的中间位置上。例4-2中数据最小值xmin=38,组距(h)=3,故第一组的组界为:n(6)(6)计算各组的组中值计算各组的组中值(w(wi i)。所谓组中值,就是处于各组中心位置的数值,又叫中心值。某组的中心值(wi)=(某组的上限+某组的下限)/2第一组的中心值(w1)=(36.5+39.5)/2=38第二组的中心值(w2)=(39.5+42.52)/2=41其它各组类推,组中值如表4-7中所示。n(7)(7)统计各组频数。统计各组频数。统计频数的方法,如表4-7所示。n(8)8)画直方图画直方图。以分组号为横坐标,以频数为高度作纵坐标,作成直方图,如图4-
16、2所示。组号组号组界组界组中值组中值(wi)频数频数(f)累计频数累计频数相对累计频率相对累计频率/%136.539.538222239.542.541244342.545.544162020445.548.547183838548.551.550236161651.554.553177878754.557.556159393857.560.55939696960.563.5624100100表4-7频数统计表510152012345678943图42直方图22频数组号16182317152.2.直方图的用途直方图的用途n直方图在生产中是经常使用的简便且能发挥很大作用的统计方法。其主要作用是:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 质量管理 可靠性 1045438
限制150内