人教A版高中数学必修五3.1.1不等式及其性质1课件.ppt
《人教A版高中数学必修五3.1.1不等式及其性质1课件.ppt》由会员分享,可在线阅读,更多相关《人教A版高中数学必修五3.1.1不等式及其性质1课件.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.1 不等式的性质 不等式的不等式的运算性质运算性质温故知新性质性质1:如果如果ab,那么,那么ba;如果;如果bb.性质性质1表明,把不等式的左边和右边表明,把不等式的左边和右边交换位置,所得不等式与原不等式异向,交换位置,所得不等式与原不等式异向,我们把这种性质称为不等式的我们把这种性质称为不等式的对称性对称性。(对称性对称性)不等式的基本性质不等式的基本性质性质性质2:如果如果ab,bc,那么,那么ac.证明:根据两个正数之和仍为正数,得证明:根据两个正数之和仍为正数,得(ab)+(bc)0 ac0 ac.这个性质也可以表示为这个性质也可以表示为cb,ba,则,则cb,则,则a+cb+
2、c.证明:因为证明:因为ab,所以,所以ab0,因此因此(a+c)(b+c)=a+cbc=ab0,即即 a+cb+c.性质性质3表明,不等式的表明,不等式的两边都加上同一两边都加上同一个实数个实数,所得的不等式与原不等式同向,所得的不等式与原不等式同向.(可加性可加性)a+bc a+b+(b)c+(b)acb.由性质由性质3可以得出可以得出推论推论1:不等式中的任意一项都可以把它不等式中的任意一项都可以把它的符号变成相反的符号后,从不等式的的符号变成相反的符号后,从不等式的一边移到另一边。一边移到另一边。(移项法则移项法则)推论推论2:如果如果ab,cd,则,则a+cb+d.同向不等式可相加性
3、同向不等式可相加性 性质性质4:证明:因为证明:因为ab,所以,所以a+cb+c,又因为又因为cd,所以,所以b+cb+d,根据不等式的传递性得根据不等式的传递性得 a+cb+d.几个几个同向不等式同向不等式的两边分别的两边分别相加相加,所,所得的不等式与原不等式得的不等式与原不等式同向同向。推论推论1:如果:如果ab0,cd0,则,则acbd.性质性质5:如果如果ab,c0,则,则acbc;如果;如果ab,c0,则,则acb,c0,所以,所以acbc,又因为又因为cd,b0,所以,所以bcbd,根据不等式的传递性得根据不等式的传递性得 acbd。几个两边都是正数的几个两边都是正数的同向不等式
4、同向不等式的两边的两边分别分别相乘相乘,所得的不等式与原不等式,所得的不等式与原不等式同向同向。(可乘性可乘性)性质性质6:推论推论2:如果如果ab0,则,则anbn,(nN+,n1).证明:因为证明:因为 个,个,根据性质根据性质4的推论的推论1,得,得anbn.(可乘方性可乘方性)性质性质7:推论推论3:如果如果ab0,则,则,(nN+,n1).证明:用反证法,假定证明:用反证法,假定 ,即,即 或或 ,根据性质根据性质4的推论的推论2和根式性质,得和根式性质,得ab矛盾,因此矛盾,因此(可开方性可开方性)性质性质8:例例1 1、已知已知a ab b0 0,c c0 0,求证求证:.例题讲
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 必修 3.1 不等式 及其 性质 课件
限制150内