【数学】3.2《立体几何中的向量方法(一)课件(新人教B选修2-1)》.ppt
《【数学】3.2《立体几何中的向量方法(一)课件(新人教B选修2-1)》.ppt》由会员分享,可在线阅读,更多相关《【数学】3.2《立体几何中的向量方法(一)课件(新人教B选修2-1)》.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.2 3.2 立体几何中的向量方法(一)立体几何中的向量方法(一)设直线设直线l,m的方向向量分别为的方向向量分别为a,b,平面,平面,的法向量分别为的法向量分别为u,v,则则线线平行:线线平行:lm a b a=kb;线面平行:线面平行:l au au=0;面面平行:面面平行:u v u=kv.面面平行:面面平行:u v u=kv.;面面垂直:面面垂直:u v uv=0.线面垂直:线面垂直:l a u a=ku;二、讲授新课二、讲授新课1 1、用空间向量解决立体几何问题的、用空间向量解决立体几何问题的“三步曲三步曲”。(1)建立立体图形与空间向量的联系,用空间)建立立体图形与空间向量的联系
2、,用空间向量表示问题中涉及的点、直线、平面,把立体几向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果)把向量的运算结果“翻译翻译”成相应的几何意义。成相应的几何意义。(化为向量问题)(化为向量问题)(进行向量运算)(进行向量运算)(回到图形问题)(回到图形问题)例例1:如图如图1:一个结晶体的形状为四棱柱,其中,:一个结晶体的形状为四棱柱,其中,以顶点以顶点A为端点的三条棱长
3、都相等,且它们彼此的夹为端点的三条棱长都相等,且它们彼此的夹角都是角都是60,那么以这个顶点为端点的晶体的对角线,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?的长与棱长有什么关系?A1B1C1D1ABCD图图1解:解:如图如图1,设,设化为向量问题化为向量问题依据向量的加法法则,依据向量的加法法则,进行向量运算进行向量运算所以所以回到图形问题回到图形问题这个晶体的对角线这个晶体的对角线 的长是棱长的的长是棱长的 倍。倍。思考:思考:(1)本题中四棱柱的对角线)本题中四棱柱的对角线BD1的长与棱长的长与棱长有什么关系?有什么关系?A1B1C1D1ABCD分析分析:思考:思考:(2 2
4、)如果一个四棱柱的各条棱)如果一个四棱柱的各条棱长都相等,并且以某一都相等,并且以某一顶点点为端点端点的各棱的各棱间的的夹角都等于角都等于 ,那么有那么有这个四棱柱的对角线的长可以确定这个四棱柱的对角线的长可以确定棱长吗棱长吗?A1B1C1D1ABCD分析分析:这个四棱柱的对角线的长可以确定棱长。这个四棱柱的对角线的长可以确定棱长。(3 3)本题的晶体中相对的两个平面之间的距)本题的晶体中相对的两个平面之间的距离是多少?(提示:求两个平行平面的距离,离是多少?(提示:求两个平行平面的距离,通常归结为求两点间的距离)通常归结为求两点间的距离)A1B1C1D1ABCDH 分析:分析:面面距离面面距
5、离回归图形回归图形点面距离点面距离向量的模向量的模解:解:所求的距离是所求的距离是A1B1C1D1ABCDH练习练习:如图如图2 2,空间四边形,空间四边形OABCOABC各边以及各边以及ACAC,BOBO的长都是的长都是1 1,点,点D D,E E分别是边分别是边OAOA,BCBC的中点,的中点,连结连结DEDE,计算,计算DEDE的长。的长。OABCDE图图2 例例2 2:如如图3 3,甲站在水,甲站在水库底面上的点底面上的点A A处,乙站在水,乙站在水坝斜面上的点斜面上的点B B处。从。从A A,B B到直到直线 (库底与水坝的交线)(库底与水坝的交线)的距离的距离ACAC和和BDBD分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 立体几何中的向量方法一课件新人教B选修2-1 立体几何 中的 向量 方法 课件 新人 选修
限制150内