(课件)332函数的极值与导数 (2).ppt
《(课件)332函数的极值与导数 (2).ppt》由会员分享,可在线阅读,更多相关《(课件)332函数的极值与导数 (2).ppt(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、aby=f(x)xoyy=f(x)xoyabf(x)0f(x)0复习复习:函数单调性与导数关系函数单调性与导数关系如果在某个区间内恒有如果在某个区间内恒有 ,则则 为常数为常数.设函数设函数y=f(x)在在 某个区间某个区间 内可导,内可导,f(x)增函数增函数f(x)减函数减函数 yxOabyf(x)x1 f(x1)x2 f(x2)x3 f(x3)x4 f(x4)在在x1、x3处函数值处函数值f(x1)、f(x3)与与x1、x3左右近旁左右近旁各点处各点处的的函数值函数值相比相比,有什么特点有什么特点?f(x2)、f(x4)比比x2、x4左右近旁左右近旁各点处的各点处的函数值函数值相比相比呢
2、呢?观察图像观察图像:一、函数的极值定义一、函数的极值定义设函数设函数f(x)在点在点x0附近有定义,附近有定义,如果对如果对X0附近的所有点,都有附近的所有点,都有f(x)f(x0),则则f(x0)是函数是函数f(x)的一个极小值,记作的一个极小值,记作y极小值极小值=f(x0);函数的函数的极大值极大值与与极小值极小值统称统称为为极值极值.(极值即极值即峰谷处峰谷处的值)的值)使函数取得极值的使函数取得极值的点点x0称为称为极值点极值点 yxO探究:探究:极值点处导数值极值点处导数值(即切线斜率)有何特点?即切线斜率)有何特点?结论结论:极值点处,如果有切线,切线水平的极值点处,如果有切线
3、,切线水平的.即即:f (x)=0aby=f(x)x1 x2x3f (x1)=0 f (x2)=0 f (x3)=0 思考;若 f (x0)=0,则,则x0是否为极值点?是否为极值点?x yO分析yx3进一步探究:极值点两侧函数图像单调性有何特点?极大值极大值极小值极小值即即:极值点两侧极值点两侧单调性单调性互异互异 f (x)0 yxOx1aby=f(x)极大值点两侧极大值点两侧极小值点两侧极小值点两侧 f (x)0 f (x)0探究探究:极值点两侧极值点两侧导数正负符号导数正负符号有何规律有何规律?x2 xXx2 2 f(x)f(x)xXx1 1 f(x)f(x)增增f(x)0f(x)=0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课件332函数的极值与导数 2 课件 332 函数 极值 导数
限制150内