[精选]培训系列之10(徐成海)真空低温技术与设备22148.pptx
《[精选]培训系列之10(徐成海)真空低温技术与设备22148.pptx》由会员分享,可在线阅读,更多相关《[精选]培训系列之10(徐成海)真空低温技术与设备22148.pptx(188页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、经作者授权,版权所有归东北大学真空与流体工程研究中心与原作者共有。未经本中心及原著者同意,任何人或任何单位不得私自拷贝、刻录、传播、转载本讲义,或用于商业用途。东北大学第九期东北大学第九期真空技术真空技术培训班培训班2012.5.112012.5.20真空低温技术真空低温技术与设备与设备主讲人:徐成海主讲人:徐成海VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China真空技术真空技术o一.真空技术概况(巴德纯)o二.真空工程理论基础(孙丽娜)o三.干式真空泵原理与技术基础(巴德纯)o四.真空系统组成与设计基础(
2、岳向吉)o五.真空获得设备原理与技术基础(张以忱)o六.真空测量技术基础(刘玉岱)o七.真空镀膜技术基础(张以忱)o八.质谱原理与真空检漏(刘玉岱)o九.真空冶金技术基础(王晓冬)o十.真空与低温技术及设备(徐成海)东北大学第九期东北大学第九期培训系列之培训系列之VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China1.1.绪论绪论 1.11.1真空技术与低温技术的关系真空技术与低温技术的关系 真空技术和低温技术都诞生于17世纪,完善于19世纪,应用发展于20世纪。到目前为止,真空技术已成为一门通用性很强的科学
3、,在空间科学、原子能工业、电子科学、半导体、计算机、光学、食品、医药、冶金、化工、农业和轻工业等国民经济的各个领域都有相当程度的应用。真空技术在改造着世界。人类社会需要真空技术。低温技术也是一样,在空间科学、化工、农牧以及医药卫生等方面都有其独特的作用,在其他领域也有日益广泛的影响。没有真空技术就不可能获得超低温;没有低温技术就不能产生清洁的极高真空。低温技术的发展促进了真空科学;而真空技术的前进又带动着低温技术。已经形成了真空需要低温,低温离不开真空的局面。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,Chin
4、a 真空科学按照传统的说法可包括真空物理、真空获得、真空测量、真空应用四大方面的内容。而这四方面内容哪一方面都需要低温技术。极低压和极低温是两个极端的物理条件,而真空物理中好多公式都离不开温度T。获得清洁的真空需要低温。低温技术离不开真空技术也是显而易见的。用各种方法获得的低温液体,必须在真空绝热的条件下保存和应用。杜瓦瓶、大型贮运冷液的各种槽车,既是低温容器,也是真空设备。任何一个真空技术研究室都有低温容器,任何一个低温技术研究室都有真空抽气设备,这就是真空技术与低温技术相互联系的见证。VacuumandFluidEngineeringResearchCenterofNortheastern
5、University,China 1.2 1.2真空低温技术概况真空低温技术概况 真空的概念可以理解为低于一个标准大气压的气体状态,其法定测量单位为Pa(帕)。低温是描述一个系统冷热程度的状态,低温泛指低于周围环境温度的状态,其法定测量单位为K(绝对温标),可以与(摄氏温标)通用。就真空和低温的成因而言,可分为“人造真空”和“自然真空”,“人造低温”和“自然低温”两种。“人造真空”是指由于和产和科研的需要,用各种真空获得设备对容器进行抽气而获得的低压空间。“人造低温”也是指根据人们的要求,用各种制冷剂对需要低温的地方制冷而造成的低温环境。两者共同的特点都要消耗能量。“自然真空”和“自然低温”都
6、是天然造成的。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 根据使用习惯,人们通常按压力划分出几个不同的真空区域:低真空:11051102Pa 中真空:1102110-1Pa 高真空:110-1110-6Pa 超高真空:110-6Pa以下 当前,“人造真空”可获得110-13Pa,绝对真空(既0Pa)是永远无法实现的。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China1.31.3真空低温技术的应用真空低温技术的应用
7、目前真空技术与低温技术已不仅是分别应用,而是进入了两者结合应用效果更好的时代。宇宙研究缺了真空和低温这两个条件就不可能完成,而原子能物理、原子能工业及核聚变研究等领域的进展若说是靠真空和低温的进展来支持也决不过分。此外,在电子工业和化学工业的部分领域中,真空和低温已成为极其重要的因素。对极限状态下的事物进行所谓基础研究时,超高真空和极低温条件非常有用。如果详细叙述其具体应用,篇幅就太长了,这里仅简单地介绍几种常用的、本书准备较详细研究的例子。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China1.3.11.3
8、.1真空冷冻干燥真空冷冻干燥目前,真空冷冻干燥技术(简称冻干技术)主要应用在医药、食品和新材料研制等领域。(1)医药工业 (2)食品工业 (3)生物体的保存 (4)实验动物的处理 (5)研制新材料VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 1.3.2 1.3.2真空压力浸渍真空压力浸渍 1.3.31.3.3真空保鲜真空保鲜(1)真空冷却 (2)真空储藏(减压储藏)1.3.41.3.4空间真空低温技术空间真空低温技术 (1)宇宙空间模拟 (2)发射航天器的火箭 (3)低温真空光学试验系统 1.3.51
9、.3.5真空绝热与低温容器真空绝热与低温容器 (1)石油化工方面的应用 (2)冶金工业方面的应用 (3)机械工业方面的应用 (4)电子工业方面的应用 (5)卫生部门的应用 (6)农业、畜牧业、林业方面的应用VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 1.3.6 1.3.6低温真空泵低温真空泵 (1)红外天文卫星上的氦制冷 (2)超导磁境装置的低温真空系统 (3)重离子加速器的真空系统 (4)低温泵在真空镀膜中的应用 1.3.71.3.7低温真空技术的其他应用低温真空技术的其他应用 (1)大型超导线圈
10、LCT (2)磁悬浮高速列车VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 1.41.4真空低温技术与设备研究的内容真空低温技术与设备研究的内容由浅入深地介绍了真空低温技术的基本理论,真空获得备和低温获得设备,真空系统元件和低温系统元件,真空系统设计和低温系统设计等内容,便于自学。真空冷冻干燥技术与设备和真空压力浸渍技术与设备是低真空和普冷系统联合应用的典范,属于本书编著的重点。真空冷冻工艺是值得研究、不太容易掌握的技术,它受冻干物品,冻干机性能及其它多种因素的影响,至今仍有冻干工艺的手艺,是艺术而不是
11、科学的观点。低温容器和低温真空泵是真空和深冷系统联合应用的晶华。真空保鲜和空间真空低温技术是本书第二版新增加的两部分内容。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China2.2.真空技术基础真空技术基础2.1蒸发与凝结蒸发与凝结蒸发(或升华)与凝结的物理现象在真空技术中是很常见的,其实质是液(固)-气界面所发生的一种相变过程。单位时间从单位面积上由液体(或固体)转化成气体的质量称为蒸发率。单位时间在单位面积上由气态转化为液态(或固态)的质量定义为凝结率。当蒸发率大于凝结率时,表现为蒸发;当凝结率大于蒸发率
12、时,表现为凝结;当凝结率等于蒸发率时,表现为饱和状态。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 2.2 2.2气体的热传导气体的热传导气体空间的传热现象可由许多机理造成。高压力下气体内部如有区域性温差,会引起密度差,并由重力影响而发生热对流传热。高温区还可以穿越空间通过热辐射作用传热给低温区。由气体分子热运动而输运能量,称为气体热传导。2.32.3真空状态下气体的流动真空状态下气体的流动 2.42.4真空获得设备真空获得设备 2.52.5真空测量真空测量 2.62.6真空阀门真空阀门 2.72.7
13、真空系统真空系统 2.82.8检漏方法检漏方法VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China3.3.低温技术基础低温技术基础 3.13.1低温技术的热力学基础低温技术的热力学基础 3.1.13.1.1几个常用的基本概念几个常用的基本概念 (1)工质的内能 工质的内部所具有的微观能量称为工质的内能。主要包括分子运动的动能,成为内动能。内洞能是温度的函数,内位能是比容的函数。内能的数值完全有系统所处的状态决定,与变化到这个状态的过程无关。因此,称之为态函数。储存于工质中的能量有三种形式:工质重心移动而形成的
14、外动能;工质重心垂直位移产生的外位能;内能。系统的总能量为三者之和。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China (2)功和热量 功是力与沿力作用方向产生位移的乘积,是能量转换的基本形式之一;热量是物体在热传递过程中能量改变的变量。功和热量都是内能改变的变量。功和热量是在变化过程中才出现的量,不仅与过程的初态和终态有关,而且与从初态到终态的过程有关系。因此,称之为过程量。(3)广义力和广义位移 在气体制冷机中,压缩和膨胀时常见的机械功W,就是在某一压力P下,工质容积的变化:dw=PdV。类似于等于力乘
15、位移。在其他制冷方式中,有些参数与容积V有类似的性质,这一类参数成为外参数。可以用一组状态参数Xi表示,它们的变化称之为广义位移。(4)焓与熵 在实际制冷系统中,要涉及到工质的流动,流体的能量除内能u外,总有一项流动能以克服压力强制工质流入,流出系统,于是每单位工质的流动所需要的能量用pv表示,u和pv都是由状态单值决定的,可以在统一单位下把它们加起来,得到一个新的综合量这就是焓。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China H=U+PV 焓的单位为kJ/kg。熵是一个导出的状态参数,它与工质分子的热
16、运动有关,熵代表一个热平衡系统在一定的压力和温度下内部分子的热运动的无序程度。dS=dQ/T 式中Q工质所获得的能量,kJkg T工质在获得能量时的绝对温度,K S熵的变化量,kJkgk 工质在一定温度T下对外有热交换时,热交换的数量用温度T和熵的变化ds的乘积表示。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 3.1.2 3.1.2 热力学基本定律在制冷技术中的应用热力学基本定律在制冷技术中的应用 (1)热力学第一定律 在工质受热做功的过程里,工质由于受热而自外界得到的能量,应该等于对外界做功所付出
17、的能量与贮存于工质内部的能量变化之和。(2)热力学第二定律 热力学第二定律给出了提高制冷剂效率的方面和限度。第二定律可以用两种方法表达:克劳修斯说法:不可能把热量从低温物体转移到高温物体而不产生其它影响。开尔文的说法:不可能从单一热源吸收热量使之完全变为有用功而不产生其它影响。(3)热力学第三定律 用任何方法,无论这种方法如何理想,都不可能以有限次操作,将任何系统的温度降低到绝对零度。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 3.1.33.1.3制冷系数与卡诺定理制冷系数与卡诺定理(1)制冷系数
18、制冷系数为工质从低温源取出的热量与外界对工质所做的功之比:式中 从低温源取出的热量即循环的制冷量;工质在一个循环中释放给高温源的热量;AW外界对工质所做的功。制冷系数就是一个制冷循环的热效率。(2)卡诺定理 在同样的高温热源下和低温热源下之间工作的一切可逆制冷机的制冷系数都相等;可逆循环制冷机的制冷系数越大。一切实际制冷机所能达到的极限就是可逆制冷机的制冷系数。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China (3)典型的可逆循环卡诺循环 卡诺循环是以理想气体为工质,由两个等温过程和两个绝热过程所组成的理
19、想热力循环。(4)卡诺比 实际制冷循环在压缩机和膨胀机中都存在机械摩擦,气流摩擦,膨胀时的温度不均匀及与气缸的温差,这一切都要引起不可逆热流动的熵增加。此外,还有由环境漏热引起的熵增加。这一切都使实际的制冷机的效率低于具有同样温度界限的卡诺循环的效率。这就为提高制冷机效率指出了方向和限变。实际制冷机的制冷系数与同样条件下卡诺循环制冷系数的比值称为卡诺或卡诺效率。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 3.1.43.1.4实际气体的性质实际气体的性质 表述实际气体的状态方程实际有150多种,其中最
20、常用的是范德瓦尔斯方程。式中P是压力,V是容积,T是温度,R是摩尔气体常数,a,b是范德瓦耳斯常数。对于不同的气体具有不同的常数值。3.23.2低温的获得低温的获得 获得低温的方法有很多,可分为物理方法和化学方法。其中绝大多数为物理方法。在物理方法中应用最为广泛的有:相变制冷,气体绝热膨胀制冷,涡流制冷,绝热放弃制冷,温差电制冷,顺磁监或核绝热退磁制冷,氨稀释制冷,氨减压蒸发制冷,吸附制冷,宇宙空间低温热汇(2-4K)辐射制冷等方法。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 3.2.1 3.2.1
21、相变制冷相变制冷 相变是指物质集聚态的变化。在相变过程中物质分子重新排列和分子运动速度改变需要吸收或放出热量,这种热量称为相变潜热。物质积聚态变化过程的特征是与物质的原来状态及转换条件有关,因此相变过程有不同的形态。相变制冷就是利用某些物质相变的时的吸热效应 (1)汽化 液体转变为蒸汽称为汽化,包括蒸发和沸腾两种情况。气体的蒸发是在液体的外漏界面上蒸汽压力低于饱和蒸汽压力下进行的;沸腾时蒸汽不仅由液体表面产生,而大部分来自液体内部,沸腾是在蒸汽压力等于饱和蒸汽压力下进行的。1kg液氨在大气压下汽化时可产生1370kj冷量,压力降低时沸点降低,汽化潜热增大,每kg液体汽化时的吸热量,在制冷过程中
22、称为单位制冷量,它不仅与液体的汽化潜热L有关,还与开始汽化前的含气量,即干变x有关,,干变增大,制冷量减小。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China (2)溶解 固体物质在一定的温度下转变成液体称为溶解(也称溶化)。1kg物质在定温下溶解所需热量称为溶解热。冰溶化时每kg吸收334.9kj的热量,可制取零度以上的低温。盐类在水中溶解时吸收熔解热,引起水温降低。用冰或雪代替水时,除盐类的熔解热外,冰或雪还要吸收溶化热。因此,可以得到更低的温度(低于0)。且含盐量越多,制取的温度越低。(3)升华 物质
23、由固态直接转变为气态的现象称为升华。干冰即是固态二氧化碳,它是一种良好的制冷剂,即利用固态二氧化碳升华而制冷。除了干冰以外,目前使用最多的固体升华制冷剂有氢,氖,氩,氮及一氧化碳。采用固体制冷剂向高真空空间升华为原理的制冷系统,他的工作温度与所选择的制冷剂,高真空空间所保持的压力及热负荷等有关,运行时应根据要求和条件而调整。VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 3.2.2 3.2.2气体绝热膨胀制冷气体绝热膨胀制冷 在一定的压力及温度条件下,气体通过节流阀或膨胀机进行绝热膨胀时,它的温度降低,
24、甚至还会液化。这种制冷方法常用于气体分离和气体液化及气体制冷机中。1)实际气体的节流 (1)节流过程的热力学特征 (2)微分节流效应与积分节流效应 (3)节流过程的物理性质 (4)转化温度与转化曲线 (5)积分节流环节效应的计算 (6)等温节流效应 2)气体的等熵膨胀 (1)等熵膨胀制冷概念 (2)微分等熵效应 (3)实际气体等熵膨胀的制冷量 3)节流和等熵膨胀比较VacuumandFluidEngineeringResearchCenterofNortheasternUniversity,China 3.2.3 3.2.3其他低温获得方法其他低温获得方法 (1)绝热放气 容器中的高压气体,通
25、过控制阀向外绝热放气时,由于残留在容器中的气体要向放出的气体做推动功,消耗自身的一部分能量,因而温度下降,实现制冷。(2)吸收式制冷 利用溶液在一定条件下能析出低沸点组分的蒸汽,而在另一条件下又能吸收低沸点组分的蒸汽这一特性,吸收蒸发器中产生的蒸汽,从而制冷。例如利用水蒸气可以迅速的被浓硫酸所吸收的特性,将一只装水的容器与一只装浓硫酸的容器共置于一个大容器内,然后用真空泵将大容器内的空气抽走,不久在水的表面会形成一层冰,这是由于浓硫酸吸收水蒸气,使水不断气化,从剩余水中吸取气化溶热,使水降温的结果。其中水称为制冷剂,浓硫酸称为吸收剂,类似的制冷系统有利用氨作为制冷剂,水为吸收剂的氨水吸收式制冷
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精选 培训 系列 10 徐成海 真空 低温 技术 设备 22148
限制150内