正定二次型和正定矩阵讲稿.ppt
《正定二次型和正定矩阵讲稿.ppt》由会员分享,可在线阅读,更多相关《正定二次型和正定矩阵讲稿.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于正定二次型和正定矩阵第一页,讲稿共二十九页哦2 2一、基本概念定义定义 设设A A为实为实n n阶对称矩阵,如果对于任意非零向阶对称矩阵,如果对于任意非零向量量X X,二次型,二次型f f=X XT TAXAX均为正数,则称二次型均为正数,则称二次型f f为正定为正定的,其矩阵的,其矩阵A A 称为正定矩阵称为正定矩阵.定义定义 如果对于任意向量如果对于任意向量X X,二次型,二次型f f=X XT TAXAX均为非均为非负负(非正非正)数,则称二次型数,则称二次型f f为半正为半正(负负)定的,其矩定的,其矩阵阵A A 称为半正称为半正(负负)定矩阵定矩阵.定义定义 如果实二次型如果实二
2、次型f f=X XT TAXAX对于某些向量对于某些向量X X为正数为正数,并且对于对于某些向量并且对于对于某些向量X X为负数为负数,则称二次型是不则称二次型是不定的定的.第二页,讲稿共二十九页哦33例例第三页,讲稿共二十九页哦44二、正定矩阵的充分必要条件定理定理 实对称矩阵A正定的充分必要条件是其特征值都是正数.证明证明 设实对称矩阵A的特征值 都是正数.存在正交矩阵Q,使得 QTAQ=,为对角矩阵,其对角线元素为 ,对于 令 即 ,显然 又 故这就证明了条件的充分性.第四页,讲稿共二十九页哦5设A是正定矩阵,而 是其任意特征值,X是属于 的特征向量,则有于是必要性得证.推论推论 若A是
3、正定矩阵,则|A|0.证明证明 5第五页,讲稿共二十九页哦66例例 判断下列矩阵是否为正定矩阵解解第六页,讲稿共二十九页哦77第七页,讲稿共二十九页哦88定理定理 实对称矩阵A正定的充分必要条件是它与单位矩阵合同.证明 充分性.设实对称矩阵A合同与E,即存在可逆矩阵C,使得 对于任意向量XO,由于C可逆,可从 解出Y O,于是故A是正定的.必要性.设实对称矩阵A是正定的.由于A是实对称的,A合同于一个对角矩阵 ,其对角线元素是A的特征值 由于A是正定的,这些特征值大于零,而这样的对角矩阵与单位矩阵合同,故A合同于单位矩阵.第八页,讲稿共二十九页哦9定理定理实对称矩阵A 正定的充分必要条件是存在
4、可逆矩阵P,使得A=PTP.证明设A=PTP,P可逆.对于任意 ,由于P可逆,PXo,故设A正定,则A合同于单位矩阵,即存在可逆矩阵,使得A=PTEP=PTP.第九页,讲稿共二十九页哦10例例 A正定,B实对称,则存在可逆矩阵R,使得RTAR和RTBR同时为对角形.证明证明存在P,使得PTAP=E,PTBP实对称,存在正交矩阵Q,使得 QTPTBPQ=D为对角形,令R=PQ,则为对角形.第十页,讲稿共二十九页哦11例A,B正定,AB正定的充分必要条件是A,B可交换.证明必要性设AB正定,则AB对称,充分性 设A,B可交换,则AB是实对称矩阵,A正定,A=CCT,AB=CCTBCTBC,CTBC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 定二次型 正定 矩阵 讲稿
限制150内