偏导数与全微分.pptx
《偏导数与全微分.pptx》由会员分享,可在线阅读,更多相关《偏导数与全微分.pptx(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一一偏导数偏导数 一元函数y=f(x)y=f(x)只存在y y随x x变化的变化率,即点x x沿x x轴移动的一个方式下的变化率(变化快慢)oxyPx1.一元函数变化率与多元函数变化率第1页/共39页 二元函数z=f(x,y)z=f(x,y)存在z z随x x变化的变化率随 y y变化的变化率随x xy y同时变化的变化率。即点M(x,y)M(x,y)在域D D内可沿x x轴沿y y轴沿其它直线方向移动的多个方式下的变化率。因而研究二元函数的变化率问题,需区别沿哪一个方向的变化,比一元函数时复杂得多。o oxyzMPD D第2页/共39页 一元函数变化率问题是研究二元函数变 化率问题的基础 对
2、于曲面z=f(x,y)z=f(x,y),当我们用过点(0,(0,y y0 0,0),0)而平行于xozxoz面(垂直于y y轴)的平面去截时,截口是一条曲线 z=f(x,yz=f(x,y0 0),),它在xozxoz面上的投影是z z对于x x的一元函数的图象,研究这条曲线的变化率就是研究二元函数z=f(x,y)z=f(x,y)当y=yy=y0 0时沿x x轴方向的变化率。第3页/共39页M MMMP P0 0 x0D DS SXyzz=f(x,yz=f(x,y0 0)oy0第4页/共39页 二元函数z=f(x,y)z=f(x,y)当y y不变(x x不变)时,对于x x(对于y)y)的变化率
3、,就是二元函数 的偏导数偏导数。一般地,当y不变时,z=f(x,y)是x的一元函数,研究这个一元函数的变化率,就是研究二元函数z=f(x,y)沿x轴方向的变化率。对于x不变时,情形类似。第5页/共39页2 2偏导数定义 设二元函数z=f(x,y)z=f(x,y)在(P P0 0(x(x0 0,y,y0 0)有定义,当y=yy=y0 0不变时,x x在x x0 0取得增量 x x,相应地函数有 增量f(xf(x0 0+x,yx,y0 0)-f(x)-f(x0 0,y,y0 0),若存在,则称A A为z=f(x,y)z=f(x,y)在点(x(x0 0,y,y0 0)处对于对于x x的偏导的偏导数数
4、记为 如第6页/共39页类似地,z=f(x,y)z=f(x,y)在点P P0 0(x(x0 0,y,y0 0)处对对y y的偏导数的偏导数定义为记为 第7页/共39页注记:偏导数f fx x(x(x0 0,y,y0 0),f),fy y(x(x0 0,y,y0 0)分别描述z=f(x,y)z=f(x,y)在点(x x0 0,y,y0 0)处沿 x x方向,y y方向的变化率;z=f(x,y)z=f(x,y)在点(x x0 0,y,y0 0)处沿其它方向的变化率称为方向导数,将在后面讨论;二元以上的多元函数的偏导数,类似二元函数情形。第8页/共39页3 3偏导函数概念 偏导函数:偏导函数:当z=
5、f(x,y)z=f(x,y)在域内每一点(x,y)(x,y)处对 x x(y y )的偏导数都存在,则它就是x,yx,y的函数,称为偏导函数偏导函数。记号:z=f(x,y)z=f(x,y)在(x x0 0,y,y0 0)处的偏导数是偏导函数在 (x x0 0,y,y0 0)处的函数值。在不至混淆时常称偏导函数偏导数。或或第9页/共39页4 4偏导数的计算法 对哪一个自变量求偏导数时,就把其它自 变量视为常数,按一元函数求导法则计算:求求 时,只要把时,只要把y y暂时看作常量而对暂时看作常量而对x x求导数;求导数;求求 时,只要把时,只要把x x暂时看作常量而对暂时看作常量而对y y求导数。
6、求导数。第10页/共39页 求 在点(1,2)处的偏导数解:例1第11页/共39页解:求 的偏导数第12页/共39页解:设 ,求证第13页/共39页解:求 的偏导数(三元函数)第14页/共39页5.5.偏导数的几何意义偏导数的几何意义 切线M M0 0T Tx x对x x轴的斜率 切线M M0 0T Ty y对y y轴的斜率oxyzM M0 0P P0 0 x0y0TyTxz=f(xz=f(x0 0,y),y)z=f(x,yz=f(x,y0 0)第15页/共39页例2 2 求二元函数的偏导数第16页/共39页解(1):第17页/共39页解(2 2):当 时 当 时第18页/共39页6.6.高阶
7、偏导数高阶偏导数二阶偏导数:二阶偏导数:设 为D上的二元函数,则其在 D上的偏导数为 若二元函数 的偏导数也存在,则称其是函数 的二阶偏导数二阶偏导数。第19页/共39页z=f(x,y)z=f(x,y)的二阶偏导的二阶偏导数数记号:第20页/共39页例5 求二阶偏导数解:第21页/共39页解:第22页/共39页注记:若 在D内连续,则在D内 (二阶混合偏导数与求导次序无关的充分条件!)类似二阶偏导数,可得三阶、四阶、n阶 偏导数,二阶以上的偏导数统称高阶偏导数;二元函数的二阶偏导数有4个,三阶有8个,n阶有2n个;三元函数的n阶偏导数有3n个;等等。第23页/共39页7.7.偏导数的经济意义偏
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 微分
限制150内