2资金的时间价值和等值计算clb.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2资金的时间价值和等值计算clb.pptx》由会员分享,可在线阅读,更多相关《2资金的时间价值和等值计算clb.pptx(62页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章 资金的时间价值和等值计算 一、基本概念一、基本概念 1.资金的时间价值资金的时间价值 指初始货币在生产与流通中与劳动相结合,指初始货币在生产与流通中与劳动相结合,即作为资本或资金参与再生产和流通,随着时间的推即作为资本或资金参与再生产和流通,随着时间的推移会得到货币增值,用于投资就会带来利润;用于储移会得到货币增值,用于投资就会带来利润;用于储蓄会得到利息。蓄会得到利息。资金的运动规律就是资金的价值随时间的变化而资金的运动规律就是资金的价值随时间的变化而变化,其变化的主要原因有:变化,其变化的主要原因有:(1)通货膨胀、资金贬值)通货膨胀、资金贬值 (2)承担风险)承担风险 (3)投资
2、增值)投资增值l 通常用货币单位来计量工程技术方案的得失,通常用货币单位来计量工程技术方案的得失,我们在经济分析时就主要着眼于方案在我们在经济分析时就主要着眼于方案在整个寿命期整个寿命期内的货币收入和支出的情况,这种货币的收入和支内的货币收入和支出的情况,这种货币的收入和支出称之为现金流量出称之为现金流量(Cash Flow)。例如例如,有一个总公司面临两个投资方案,有一个总公司面临两个投资方案A A、B B,寿命期都是寿命期都是4 4年,初始投资也相同,均为年,初始投资也相同,均为1000010000元。元。实现利润的总数也相同,但每年数字不同,具体数实现利润的总数也相同,但每年数字不同,具
3、体数据见表据见表1 1一一1 1。如果其他条件都相同,我们应该选用那个方案如果其他条件都相同,我们应该选用那个方案呢呢?年末年末A方案方案B方案方案0-10000-100001+7000+10002+5000+30003+3000+50004+1000+7000表表1一一1 另有两个方案另有两个方案C和和D,其他条件相同,仅现金流其他条件相同,仅现金流量不同。量不同。3000 3000 3000 方案方案D 3000 3000 30006000 1 2 3 4 5 6方案方案C 0 1 2 3 4 5 60 3000 3000 货币的支出和收入的经济效应不仅与货币量的货币的支出和收入的经济效应
4、不仅与货币量的大大小小有关,而且与发生的有关,而且与发生的时间时间有关。由于资金的时间价有关。由于资金的时间价值的存在,使不同时间上发生的现金流量无法直接加值的存在,使不同时间上发生的现金流量无法直接加以比较,这就使方案的经济评价变得比较复杂了。以比较,这就使方案的经济评价变得比较复杂了。以下图为例,从现金流量的以下图为例,从现金流量的绝对数绝对数看,方案看,方案B比比方案方案A好好;但从资金的但从资金的时间价值时间价值看,方案看,方案A似乎有它的似乎有它的好处。如何比较这两个方案的优劣就构成了本课程好处。如何比较这两个方案的优劣就构成了本课程要讨论的重要内容。这种考虑了资金时间价值的经济要讨
5、论的重要内容。这种考虑了资金时间价值的经济分析方法,使方案的评价和选择变得更现实和可靠。分析方法,使方案的评价和选择变得更现实和可靠。例例 某建设项目需要投资600万元,寿命期是2年。现有两个方案,A方案各年的收益额为:第一年600万元,第二年200万元;乙方案各年的收益额为第一年无收益,第二年900万元。试比较选优。某项目投资方案的比较年末年末方案方案0-600-600160002200900 如果再投资收益率为如果再投资收益率为20%,A方案的收益为方案的收益为600(1+20%)+200=920(万元)。而(万元)。而B方案仍为方案仍为900万万元,元,A方案优于方案优于B方案;如果再投
6、资收益率为方案;如果再投资收益率为10%,A方方案的收益为案的收益为600(1+10%)+200=860(万元),而(万元),而B方方案为案为900万元,万元,B方案优于方案优于A方案。方案。2.现金流量图(现金流量图(cash flow diagram)描述现金流量作为时间函数的图形,它描述现金流量作为时间函数的图形,它 能能 表示资金在不同时间点流入与流出的情况。表示资金在不同时间点流入与流出的情况。是资金时间价值计算中常用的工具。是资金时间价值计算中常用的工具。大大 小小流流 向向 时间点时间点现金流量图的三大要素现金流量图的三大要素300400 时间时间2002002001 2 3 4
7、现金流入现金流入 现金流出现金流出 0 说明:说明:1.水平线是时间标度,时间的推移是水平线是时间标度,时间的推移是自左向右自左向右,每一格代表一个时间单位(年、月、日);每一格代表一个时间单位(年、月、日);2.箭头表示现金流动的方向:箭头表示现金流动的方向:向上向上现金的流入,现金的流入,向下向下现金的流出;现金的流出;3.现金流量图与立脚点有关。现金流量图与立脚点有关。注意:注意:1.第一年年末的时刻点同时也表示第二年年第一年年末的时刻点同时也表示第二年年 初。初。2.立脚点不同立脚点不同,画法刚好相反。画法刚好相反。3.净现金流量净现金流量=现金流入现金流入 现金流出现金流出 4.现金
8、流量只计算现金流量只计算现金收支现金收支(包括现钞、转帐支票包括现钞、转帐支票等凭证等凭证),不计算项目内部的现金转移不计算项目内部的现金转移(如如折旧折旧等等)。3.利息利息一定数额货币经过一定时间后资金的绝对增一定数额货币经过一定时间后资金的绝对增 值,用值,用“I”表示。表示。4.利率利率利息递增的比率,用利息递增的比率,用“i”表示表示。每单位时间增加的利息每单位时间增加的利息 原金额(本金)原金额(本金)100%利率利率(i%)=计息周期通常用年、月、日表示,也可用半年、计息周期通常用年、月、日表示,也可用半年、季度来计算,用季度来计算,用“n”表示。表示。广义的利息广义的利息信贷利
9、息信贷利息经营利润经营利润二二、利息公式利息公式(一)(一)利息的种类利息的种类 设:设:I利息利息 P本金本金 n 计息期数计息期数 i利率利率 F 本利和本利和单利单利复利复利1.单利单利每期均按原始本金计息(利不生利)每期均按原始本金计息(利不生利)I=P i n F=P(1+i n)则有则有 例题例题1:假如以年利率:假如以年利率6%借入资金借入资金1000元元,共共借借4年年,其偿还的情况如下表其偿还的情况如下表年年年初欠款年初欠款年末应付利息年末应付利息年末欠款年末欠款 年末偿还年末偿还110001000 0.06=6010600210601000 0.06=60112003112
10、01000 0.06=6011800411801000 0.06=60124012402 复利复利利滚利利滚利F=P(1+i)nI=F-P=P(1+i)n-1公式的推导公式的推导如下如下:年份年份年初本金年初本金P当年利息当年利息I年末本利和年末本利和F P(1+i)2P(1+i)n-1 P(1+i)n 1 PPiP(1+i)2P(1+i)P(1+i)in1P(1+i)n-2P(1+i)n-2 i n P(1+i)n-1P(1+i)n-1 i年年 初初欠欠 款款年年 末末 应应 付付 利利 息息年年 末末欠欠 款款年年 末末偿偿 还还1234 例题例题2:假如以年利率假如以年利率6%借入资金借
11、入资金1000元元,共借共借4年年,其偿还的情况如下表其偿还的情况如下表年年10001000 0.06=601060010601060 0.06=63.601123.6001123.601191.0201191.021262.481262.481123.60 0.06=67.421191.02 0.06=71.46(二)复利计息利息公式(二)复利计息利息公式 以后采用的符号如下以后采用的符号如下 i i 利率;利率;n n 计息期数;计息期数;P P 现在值,即相对于将来值的任何较早时间的价值;现在值,即相对于将来值的任何较早时间的价值;F F 将来值,即相对于现在值的任何以后时间的价值;将来
12、值,即相对于现在值的任何以后时间的价值;A A n n次等额支付系列中的一次支付,在各计息期末次等额支付系列中的一次支付,在各计息期末 实现。实现。G等差额(或梯度),含义是当各期的支出或收入等差额(或梯度),含义是当各期的支出或收入 是均匀递增或均匀递减时,相临两期资金支出或是均匀递增或均匀递减时,相临两期资金支出或 收入的差额。收入的差额。1.一次支付复利公式一次支付复利公式 0 1 2 3 n 1 n F=?P(已知)已知)(1+i)n 一次支付复利系数一次支付复利系数F=P(1+i)F=P(1+i)n n=P(F/P,i,n)P(F/P,i,n)例如在第一年年初,以年利率例如在第一年年
13、初,以年利率6%投资投资1000元,元,则到第四年年末可得之本利和则到第四年年末可得之本利和 F=P(1+i)n =1000(1+6%)4 =1262.50元元 例:例:例:例:某投资者购买了某投资者购买了某投资者购买了某投资者购买了10001000元的债券,限期元的债券,限期元的债券,限期元的债券,限期3 3年,年年,年年,年年,年利率利率利率利率10%10%,到期一次还本付息,按照复利计算法,则,到期一次还本付息,按照复利计算法,则,到期一次还本付息,按照复利计算法,则,到期一次还本付息,按照复利计算法,则3 3年后该投资者可获得的利息是多少?年后该投资者可获得的利息是多少?年后该投资者可
14、获得的利息是多少?年后该投资者可获得的利息是多少?I=P(1+i)n1=1000(1+10%)31=331 元元解:解:0123年年F=?i=10%10002.一次支付现值公式一次支付现值公式 0 1 2 3 n 1 n F(已知)已知)P=?例如年利率为例如年利率为6%,如在第四年年末得到的本利,如在第四年年末得到的本利和为和为1262.5元,则第一年年初的投资为多少?元,则第一年年初的投资为多少?3.等额支付系列复利公式等额支付系列复利公式 0 1 2 3 n 1 n F=?A(已知)A1累累 计计 本本 利利 和和(终终 值值)等额支付值等额支付值年末年末23AAnAAA+A(1+i)A
15、+A(1+i)+A(1+i)2A1+(1+i)+(1+i)2+(1+i)n-1=F 0 1 2 3 n 1 n F=?A(已知)已知)即即 F=A+A(1+i)+A(1+i)2+A(1+i)n-1 (1)以以(1+i)乘乘(1)式式,得得 F(1+i)=A(1+i)+A(1+i)2+A(1+i)n-1+A(1+i)n (2)(2)(1),得得F(1+i)F=A(1+i)n A 例如连续例如连续5年每年年末借款年每年年末借款1000元,按年利率元,按年利率6%计算,第计算,第5 年年末积累的借款为多少?年年末积累的借款为多少?解:解:4.等额支付系列积累基金公式等额支付系列积累基金公式 0 1
16、2 3 n 1 n F(已知)A=?l5.等额支付系列现值公式等额支付系列现值公式 0 1 2 3 n 1 n P=?A(已知)6.等额支付系列资金恢复公式等额支付系列资金恢复公式 0 1 2 3 n 1 n P(已知)A=?根据F=P(1+i)F=P(1+i)n n=P(F/P,i,n)P(F/P,i,n)F=A F=A (1+i)(1+i)n n 1 1i i P(1+i)P(1+i)n n=A=A (1+i)(1+i)n n 1 1i i 7.均匀梯度系列公式均匀梯度系列公式均匀增加支付系列A1+(n-1)GA1A1+GA1+2GA1+(n-2)G0 1 2 3 4 5 n1 nA10
17、1 2 3 4 5 n1 n(1)A20 1 2 3 4 5 n1 n(3)(n2)GG0 1 2 3 4 5 n1 n2G3G4G(n1)G(2)A10 1 2 3 4 5 n1 n(1)A20 1 2 3 4 5 n1 n(3)A=AA=A1 1+A+A2 20 1 2 3 4 5 n1 n(4)注:如支付系列为均匀减少,则有 A=A1A2均匀梯度系列公式均匀梯度系列公式式中式中i/1-n/i(A/F i,n)称为梯度系数,称为梯度系数,记为(记为(A/G i,n)等值计算公式表等值计算公式表:l 运用利息公式应运用利息公式应注意的问题注意的问题:l 1.为了实施方案的初始投资,假定发生在
18、方案的为了实施方案的初始投资,假定发生在方案的寿命期初;寿命期初;l 2.方案实施过程中的经常性支出,假定发生在计方案实施过程中的经常性支出,假定发生在计息期(年)末;息期(年)末;l 3.本年的年末即是下一年的年初;本年的年末即是下一年的年初;l 4.P是在当前年度开始时发生;是在当前年度开始时发生;l 5.F是在当前以后的第是在当前以后的第n年年末发生;年年末发生;l6.A是在考察期间各年年末发生。当问题包括是在考察期间各年年末发生。当问题包括P和和A时,时,系列的第一个系列的第一个A是在是在P发生一年后的年末发生;当问题发生一年后的年末发生;当问题包括包括F和和A时,系列的最后一个时,系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 资金 时间 价值 等值 计算 clb
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内