圆的基本性质全面.pptx
《圆的基本性质全面.pptx》由会员分享,可在线阅读,更多相关《圆的基本性质全面.pptx(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆心圆心半径半径2.不在同一直线上的不在同一直线上的三个三个点确定一个圆。点确定一个圆。圆圆 确定位置确定位置 确定大小确定大小1.圆的确定圆的确定第1页/共39页点与圆的位置关系你发现点与圆的位置关系是由什么来决定的呢?如果圆的半径为如果圆的半径为r,点到圆心的距离为点到圆心的距离为d,则:,则:点在圆上点在圆上 d=r 点在圆内点在圆内 dr第2页/共39页OABC点与圆的位置确定点与圆的位置确定点在圆外点在圆外BPCBAC点在圆上点在圆上BPC=BAC第3页/共39页经过三角形的三个顶点的圆叫做三角形的经过三角形的三个顶点的圆叫做三角形的外接圆外接圆,外接圆的圆心叫做三角形的,外接圆的圆
2、心叫做三角形的外心外心,三角形叫做圆的,三角形叫做圆的内接三角形内接三角形。问题问题1:如何作三角形的外接:如何作三角形的外接圆?如何找三角形的外心?圆?如何找三角形的外心?问题问题2:三角形的外心一定:三角形的外心一定在三角形内吗?在三角形内吗?C90ABC是锐角三角形是锐角三角形ABC是钝角三角形是钝角三角形第4页/共39页垂直于弦的直径垂直于弦的直径及其推及其推及其推及其推论论论论第5页/共39页 圆是轴对称图形,每一条圆是轴对称图形,每一条 都是它的都是它的对称轴对称轴.直径所在的直线直径所在的直线圆是圆是中心对称图形中心对称图形,圆还具有圆还具有旋转不变性旋转不变性.圆的对称性圆的对
3、称性第6页/共39页从特殊到一般想一想想一想:将一个圆沿着任一条直径对:将一个圆沿着任一条直径对折,两侧半圆会有什么关系?折,两侧半圆会有什么关系?性质:性质:圆是圆是轴对称图形轴对称图形,任何一条,任何一条直直径径所在的直线都是它的所在的直线都是它的对称轴对称轴。观察右图,有什么等量关系?观察右图,有什么等量关系?OCDABOCDABOBCDAEAO=BO=CO=DO,弧AD弧BD,弧AC弧BC,AEBE。AO=BO=CO=DO,弧AD弧BC=弧AC弧BD。AO=BO=CO=DO,弧AD弧BC,弧AC弧BD。垂直于垂直于弦的直弦的直径径第7页/共39页垂径定理垂径定理垂径定理垂直于弦的直径垂
4、直于弦的直径平平分分这条这条弦弦,并且,并且平分平分弦所对弦所对的两条的两条弧弧。第8页/共39页判断下列图形,能否使用垂径定理?判断下列图形,能否使用垂径定理?注意:定理中的两个条件注意:定理中的两个条件(直径,垂直于弦)缺一不(直径,垂直于弦)缺一不可!可!定理辨析第9页/共39页练习OABE若圆心到弦的距离用若圆心到弦的距离用d表示,半径用表示,半径用r表示,表示,弦长用弦长用a表示,这三者表示,这三者之间有怎样的关系?之间有怎样的关系?第10页/共39页变式变式1 1:AC、BD有什么关系?有什么关系?变式变式2 2:ACBD依然成依然成立吗立吗?变式变式3 3:EA_,EC=_。FD
5、FB变式变式4 4:_ AC=BD.OA=OB变式变式5 5:_ AC=BD.OC=OD变式练习第11页/共39页如图,P为O的弦BA延长线上一点,PAAB2,PO5,求 O的半径。MAPBO辅助线关于弦的问题,常关于弦的问题,常常需要常需要过圆心作弦过圆心作弦的垂线段的垂线段,这是一,这是一条非常重要的条非常重要的辅助辅助线线。圆心到弦的距离、圆心到弦的距离、半径、弦长半径、弦长构成构成直直角三角形角三角形,便将问,便将问题转化为直角三角题转化为直角三角形的问题。形的问题。第12页/共39页画图叙述垂径定理,并说出定理的题设和结论。画图叙述垂径定理,并说出定理的题设和结论。题设题设结论结论直
6、线直线CD经过圆心经过圆心O直线直线CD垂直弦垂直弦AB直线直线CD平分弦平分弦AB直线直线CD平分弧平分弧ACB直线直线CD平分弧平分弧AB想一想:如果将题设和想一想:如果将题设和结论中的结论中的5 5个条件适当互个条件适当互换,情况会怎样?换,情况会怎样?OBCDAE第13页/共39页(1)平分弦平分弦(不是直径)(不是直径)的直径的直径垂直于弦垂直于弦,并且,并且平分弦所对的两条弧平分弦所对的两条弧;(2 2)弦的垂直平分线弦的垂直平分线经过圆心经过圆心,并且并且平分弦所对的两条弧平分弦所对的两条弧;(3 3)平分弦所对的一条弧的直径平分弦所对的一条弧的直径,垂直平分弦垂直平分弦并且并且
7、平分弦所对的另一条弧平分弦所对的另一条弧。推论1第14页/共39页如图如图,CD为为O的直径的直径,AB CD,EF CD,你能得到什么结论?你能得到什么结论?推论2弧弧AE弧弧BF圆的两条圆的两条平行弦平行弦所夹的弧相等所夹的弧相等。FOBAECD第15页/共39页圆心角、弧、弦、圆心角、弧、弦、圆心角、弧、弦、圆心角、弧、弦、弦心距之间的关系弦心距之间的关系弦心距之间的关系弦心距之间的关系第16页/共39页圆的性质圆是轴对称图形,每一条直径所在的直线都是对称轴。圆是以圆心为对称中心的中心对称图形。圆还具有旋转不变性,即圆绕圆心旋转任意一个角度,都能与原来的图形重合。第17页/共39页猜想与
8、证明如图,如图,AOBAOB,OC AB,OC AB。猜想:猜想:弧弧AB与弧与弧AB,AB与与AB,OC与与OC之间的关系,并证明你的猜想。之间的关系,并证明你的猜想。定理定理相等的圆心角相等的圆心角所对的所对的弧弧相等,所对的相等,所对的弦弦相相等,所对的弦的等,所对的弦的弦心弦心距距相等。相等。在同圆或等圆中,在同圆或等圆中,OABCABC第18页/共39页圆心角所对的弧相等,圆心角所对的弧相等,圆心角圆心角所对的弦相等,所对的弦相等,圆心角圆心角所对弦的弦心距相等。所对弦的弦心距相等。推论推论在同圆或等圆中,在同圆或等圆中,如果两个圆心角、两条弧、如果两个圆心角、两条弧、两条弦或两条弦
9、的弦心距中有两条弦或两条弦的弦心距中有一组量相等,那么它们所对应一组量相等,那么它们所对应的其余各组量都分别相等的其余各组量都分别相等。题设题设结论结论在在同同圆圆或或等等圆圆中中(前前提提)圆圆心心角角相相等等(条条件件)定理推论第19页/共39页1圆心角圆心角1弧弧CDn圆心角圆心角n弧弧把顶点在圆心的周角等分成把顶点在圆心的周角等分成360360份时,份时,每一份的圆心角是每一份的圆心角是11的角。的角。11的圆的圆心角所对的弧叫做心角所对的弧叫做11的弧。的弧。圆心角的度数圆心角的度数和它所对的弧和它所对的弧的度数相等。的度数相等。一般地,一般地,nn的的圆心角对着圆心角对着nn的弧。
10、的弧。弧的度数第20页/共39页圆周角圆周角第21页/共39页圆周角:圆周角:顶点在圆上顶点在圆上,并且,并且两两边都和圆相交边都和圆相交的角。的角。圆心角圆心角:顶点在圆心顶点在圆心的角的角.看清看清要点要点第22页/共39页一条弧所对的圆周角等于它一条弧所对的圆周角等于它所对的圆心角的一半所对的圆心角的一半定理化化归归化化归归圆周角定理分类讨论分类讨论完全归纳法完全归纳法数学数学思想思想第23页/共39页1、已知、已知 AOB75,求:,求:ACB2、已知、已知 AOB120,求:,求:ACB3、已知、已知 ACD30,求:,求:AOB4、已知、已知 AOB110,求:,求:ACB第24页
11、/共39页推论推论 定理:一条弧所对的圆周角等于它所定理:一条弧所对的圆周角等于它所定理:一条弧所对的圆周角等于它所定理:一条弧所对的圆周角等于它所对的圆心角的一半。对的圆心角的一半。对的圆心角的一半。对的圆心角的一半。也可以理解为:一条弧所对的圆心角也可以理解为:一条弧所对的圆心角也可以理解为:一条弧所对的圆心角也可以理解为:一条弧所对的圆心角是它所对的圆周角的二倍;是它所对的圆周角的二倍;是它所对的圆周角的二倍;是它所对的圆周角的二倍;圆周角的圆周角的圆周角的圆周角的度数等于它所对的弧的度数的一半度数等于它所对的弧的度数的一半度数等于它所对的弧的度数的一半度数等于它所对的弧的度数的一半。弧
12、相等,圆周角是否相等?反过来呢?弧相等,圆周角是否相等?反过来呢?弧相等,圆周角是否相等?反过来呢?弧相等,圆周角是否相等?反过来呢?什么时候圆周角是直角?反过来呢?什么时候圆周角是直角?反过来呢?什么时候圆周角是直角?反过来呢?什么时候圆周角是直角?反过来呢?直角三角形斜边中线有什么性质?反过直角三角形斜边中线有什么性质?反过直角三角形斜边中线有什么性质?反过直角三角形斜边中线有什么性质?反过来呢?来呢?来呢?来呢?第25页/共39页OBADEC如图,比较如图,比较ACBACB、ADBADB、AEBAEB的大小的大小同弧所对的圆同弧所对的圆周角相等周角相等如图,如果弧如图,如果弧ABAB弧弧
13、CDCD,那么,那么E E和和F F是什么关系?反过来呢?是什么关系?反过来呢?DCEBFAO等弧所对的圆周角相等;在等弧所对的圆周角相等;在同圆中,相等的圆周角所对同圆中,相等的圆周角所对的弧也相等的弧也相等DCEO1BFAO2如图,如图,O O1 1和和O O2 2是是等圆,如果弧等圆,如果弧ABAB弧弧CDCD,那么,那么E E和和F F是是什么关系?反过来呢什么关系?反过来呢?等圆也成立等圆也成立第26页/共39页推论推论1 1同弧或等弧所对的圆周角相等同弧或等弧所对的圆周角相等同圆或等圆中,相等的圆周角所对的同圆或等圆中,相等的圆周角所对的弧相等。弧相等。思考:思考:1 1、“同圆或
14、等圆同圆或等圆”的条件能否去掉?的条件能否去掉?2 2、判断正误:在同圆或等圆中,如果两个、判断正误:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦心距、两个圆心角、两条弧、两条弦、两条弦心距、两个圆周角中有一组量相等,那么它们所对应的圆周角中有一组量相等,那么它们所对应的其余各组量也相等。其余各组量也相等。FED第27页/共39页关于等积式的证明关于等积式的证明如图,已知如图,已知ABAB是是O O的弦,半径的弦,半径OPABOPAB,弦,弦PDPD交交ABAB于于C C,求证:求证:PAPA2 2PCPCPDPDCDPBAO经验:经验:证明等积式,通常利用相似;证明等积式,通常利用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本 性质 全面
限制150内