第三节生态系统的能量流动课件.ppt
《第三节生态系统的能量流动课件.ppt》由会员分享,可在线阅读,更多相关《第三节生态系统的能量流动课件.ppt(72页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三节生态系统的能量流动第1页,此课件共72页哦一、能量流动的基本原理第2页,此课件共72页哦其他名称:能流第3页,此课件共72页哦从太阳能被生产者(绿色植物)转变为化学能开始,经过食草动物、食肉动物和微生物参与的食物链而转化,从某一营养级向下一个营养级过渡时部分能量以热能形式而失掉的单向流动。第4页,此课件共72页哦能量流动是生态系统的主要功能之一。在生态系统内,能量流动与碳循环是紧密联系在一起的。在生态系统中,所有异养生物需要的能量都来自自养生物合成的有机物质,这些能量是以食物形式在生物之间传递的。能量流动的起点是生产者通过光合作用所固定的太阳能。流入生态系统的总能量就是生产者通过光合作用
2、所固定的太阳能的总量。当能量由一个生物传递给另一个生物时,大部分能量被降解为热而散失,其余的则用以合成新的原生质,从而作为潜能贮存下来。第5页,此课件共72页哦生态系统能量流动规律生态系统是一个热力学系统,生态系统中能量的传递、转换遵循热力学的两条定律:第6页,此课件共72页哦热力学第一定律热力学第一定律能量在生态系统中的流动和转化是服从热力学定律的。按照热力学的概念,能量是物体做功的本领或能力。能量的行为可以用热力学定律来描述。热力学第一定律(即能量守衡定律)指出,能量既不能创造也不热力学第一定律(即能量守衡定律)指出,能量既不能创造也不会被消灭,只能由一种形式转变为另一种形式会被消灭,只能
3、由一种形式转变为另一种形式。因此,对于包含能量转化的任何系统来说,能量的输入与输出之间都是平衡的。即进入系统的能量等于系统内储存的能减去所释放的能。第7页,此课件共72页哦热力学第二定律热力学第二定律热力学第二定律表明,在能量传递的过程中,总有一部分能量会热力学第二定律表明,在能量传递的过程中,总有一部分能量会转化成不能利用的热能,以致于任何能量传递过程都没有转化成不能利用的热能,以致于任何能量传递过程都没有100的效率的效率。生物体、生态系统和生物圈都具有基本的热力学特征,即它们能形成和维持高度的有序或“低熵”状态(熵)是系统的无序或无用能的度量)。低墒状态系由高效能量(如光或食物)不断地降
4、解为低效能量(如热)而达到。在生态系统中,由复杂的生物量结构所显示的“有序”,是通过可以不断排除“无序”的总群落呼吸来维持的。第8页,此课件共72页哦表达式H=Qp+Wp热力学第一定律H=G+TS热力学第二定律式中:H是系统中焓的变化;Qp,Wp为净热净功,各自独立的外界环境发生交换。在常压下,G是系统内自由能的变化,T是绝对温度(K),S为系统内的熵变。第9页,此课件共72页哦把热力学定律应用于生态学能量流动中意义重大。生物体是开放的不可逆的热力学系统。它和外界环境有焓的变换(H),要固定热能(TS)和外界摩擦生热(Q)。而呼吸作用损耗仅是Q的一部分热交换而不是TS。热力学定律表示了能量的守
5、恒、转换和耗散。据此,可以准确地计算一个生态系统的能量收支。第10页,此课件共72页哦Wiegert(1968)方程式H=H1H2QSRWSR生物能量学预算:P=IERWSR式中:H为系统的焓变化;H1为输入物质的焓含量;H2为输出物质的焓含量;QSR为与外界净热量的交换;WSR为与外界净功的交换;P为生成物质的焓,I为食入物质的焓;E为消化物质的焓,R为净呼吸热量损失。第11页,此课件共72页哦生态系统中能流特点:单向流动:是指生态系统的能量流动只能从第一营养级流向第二营养级,再依次流向后面的各个营养级。一般不能逆向流动。这是由于动物之间的捕食关系确定的。如狼捕食羊,但羊不能捕食狼。逐级递减
6、是指输入到一个营养级的能量不可能百分之百地流人后一个营养级,能量在沿食物链流动的过程中是逐级减少的。能量在沿食物链传递的平均效率为10%20%,即一个营养级中的能量只有10%20%的能量被下一个营养级所利用。第12页,此课件共72页哦二、生态系统中能量流动的渠道第13页,此课件共72页哦能量流动的渠道是食物链和食物网。流入一个营养级的能量是指被这个营养级的生物所同化的能量。能量流动以食物链作为主线,将绿色植物与消费者之间进行能量代谢的过程有机地联系起来。牧食食物链的每一个环节上都有一定的新陈代谢产物进入到腐屑食物链中,从而把两类主要的食物链联系起来。能量在各营养级之间的数量关系可用生态金字塔表
7、示。第14页,此课件共72页哦一个营养级的生物所同化着的能量一般用于4个方面:一是呼吸消耗;二是用于生长、发育和繁殖,也就是贮存在构成有机体的有机物中;三是死亡的遗体、残落物、排泄物等被分解者分解掉;四是流入下一个营养级的生物体内。第15页,此课件共72页哦牧食链和腐质链生态系统中的能量流动,是通过牧食食物链和碎屑食物链共同实现的。由于这些食物链彼此交联而形成网状结构,其能量流动的全过程非常复杂。就所述的两类能量线路来看,虽然二者以类似的形式而结束,但是它们的起始情况却完全不同。简单地说,一个是牧食者对活植物体的消费,另一个是碎屑消费者对死亡有机物质的利用。这里所讲的碎屑消费者,是指以碎屑为主
8、要食物的小型无脊椎动物,如猛水蚤类、线虫、昆虫幼虫、软体动物、虾、蟹等,它们是很多大型消费者的摄食对象。碎屑消费者所利用的能量,除了一部分直接来自碎屑物质之外,大部分是通过摄食附着于碎屑的微生物和微型动物而获得的。因此,按照上述的营养类别,碎屑消费者不属于独立的营养级,而是一个混合类群。由于不同生态系统的碎屑资源不同,碎屑线路所起的作用也有很大的差别。在海洋生态系统中,初级消费者利用自养生物产品的时滞很小,因此通过牧食线路的能量流明显地大于通过碎屑线路的能量流。相反,对于很多淡水(尤其是浅水)生态系统来说,碎屑线路在能量传递中往往起着主要的作用。第16页,此课件共72页哦营养级营养级绿色植物所
9、提供的食物能通过生物的摄食和被摄食而相继传递的特定线路称之为食物链。每一条食物链由一定数量的环节组成,最短的包括两个环节,如藻类鲢、水草草鱼等,而最长的通常也不超过45个环节。食物链愈短,或者距食物链的起点愈近,生物可利用的能量就愈多。第17页,此课件共72页哦在生物群落中,不同食物链上相应的环节代表着同一个营养级,位于同一营养级上的生物是通过数量相同的环节从植物获得能量的。这样,绿色植物所占据的是第一营养级,食草动物是第二营养级,初级食肉动物(吃食草动物)是第三营养级,次级食肉动物(吃初级食肉动物)是第四营养级,位于再上一级的消费者生物是第五营养级。应当注意,这种营养类别是按照功能来划分的,
10、而不是物种的分类;从实际利用的能源物质来看,某一种群可能占据一个或多个营养级。通过一个营养级的能量流,等于该级生物的同化量(A),即该级生物的生产量(P)与呼吸量(R)之和。第18页,此课件共72页哦现存量取决于个体大小在生物群落中,由食物链上稳定的能量流所维持的现存量(以干重或卡值表示)在相当大的程度上取决于生物个体的大小。生物个体愈小,单位生物量的代谢率愈高,因此可维持的生物量就愈小。相反,生物个体愈大,现存量也愈大。例如,某一时刻存在的细菌生物量要比同时存在的鱼类生物量小得多,即使这两个类群的能量利用相同。由于食物链现象(能量每次传递都有损失)与生物个体大小一代谢率关系的相互作用,结果使
11、群落内部形成了明确的营养结构,这种结构往往是某一类型的生态系统(湖泊、森林、草原等)所特有的。第19页,此课件共72页哦三、能量流动的过程包括能量的包括能量的输入输入、传递和传递和散失的过程散失的过程第20页,此课件共72页哦能量流动的过程能量流动的过程无机环境无机环境生物群落生物群落生态系统生态系统热量热量热量热量热量热量散失散失输入输入生产者生产者光能光能消费者消费者分解者分解者 传递传递第21页,此课件共72页哦生态系统能量流动全过程图解生态系统能量流动全过程图解生产者生产者初级消初级消费者费者次级消次级消费者费者三级三级消费者消费者呼呼 吸吸 作作 用用(热能)(热能)分分 解解 者者
12、呼吸作用呼吸作用(热能)(热能)第22页,此课件共72页哦功分泌脱落排粪排泄幼仔产量总生产净生产生长呼吸作用腐食动物植食动物光能或食物吸收或取食辐射或蒸发个体水平的能流过程个体水平的能流过程第23页,此课件共72页哦短耳野兔(Ochotona princeps)的个体能流第24页,此课件共72页哦食物链能流食物链能流第25页,此课件共72页哦生产量生产量P被触动物质被触动物质MR=C+NU消耗量消耗量C=A+FU未碰食物未碰食物同化量同化量A未食用物质未食用物质NU粪尿量粪尿量FU可利用食物可利用食物现存量改变现存量改变B离体量离体量E第26页,此课件共72页哦生态系统能流生态系统能流第27页
13、,此课件共72页哦I吃进的不可利用的不可利用的 未收的未收的 吃剩的吃剩的 粪便粪便 呼吸呼吸R生长繁殖NP固定的A同化的食源收获的n-1营养级n营养级可利用的能量的损失及能效能量的损失及能效第28页,此课件共72页哦生态锥体(CharlesElton,1927)群落的营养结构可以用相继营养级上的生物个体数、现存量或能量流来描述。当物质和能量通过食物链由低向高流动时,高一级的生物不能全部利用低一级贮存的能量和有机质,总有一部分未被利用。这样每经过一个营养级,能量流都要减少。如果把通过各营养级的能量流量,由低营养级到高营养级画成图,就会成为金字塔形,称为能量金字塔或能量锥体(pyramidofe
14、nergy)。第29页,此课件共72页哦生态锥体(ecologicalpyramid):能量通过营养级逐级减少,如果把通过各营养级的能流量由低到高用图型表示,就成为一个金字塔形,称能量锥体或能量金字塔。同样如果以生物量或个体数目来表示,可能得到生物量锥体(pyramidofenergy)和数量锥体(pyramidofnumber)。三类锥体合称为生态锥体。a 生物量锥体生物量锥体(gDW m-2)b 能量锥体能量锥体(kcal m-2 a-1)c 数量锥体数量锥体(个个体体 ha-1)1212第30页,此课件共72页哦数量金字塔,有时倒置生物量金字塔,有时倒置能量金字塔:能量金字塔最能保持金字
15、塔形第31页,此课件共72页哦第32页,此课件共72页哦数量金字塔数量金字塔实际上是几何学法则、食物链现象和生物大小代谢率关系三者同时起作用的结果。所谓几何学法则,就是指一个大单元的量必定等于许多小单元的总量,不管这些单元是生物还是非生物。就大多数群落来看,分布在相继营养级上的种群通常随着个体的增大而密度减小,其数量金字塔一般具有正向的形态(图10-6Aa)。但是,有一些群落的生产者比消费者个体大而数量少,因此出现反向的数量金字塔,即塔的基底比上面的一层或多层小一些(图10-6Ab)。严格地说,数量金字塔没有多大的实用意义,因为它末指出上述三个因素的相对影响。同时,一个群落中的各类生物在数量上
16、的差别非常大,以致于很难按照同一数值标度来表示。鉴于这种情况,以表格形式来表示各类生物之间的数量关系,可能比采用图解法更为合适。第33页,此课件共72页哦生物量金字塔生物量金字塔具有比较重要的意义,因为它排除了几何学因素的作用,并且明确地表示出各类生物现存置之间的定量关系。一般来说,生物量金字塔基本上反映了生物之间的食物关系对整个群落的综合影响。在标绘相继营养级上生物的现存量时只要这些生物的个体大小相差不大,可以预期有一个逐渐向上倾斜的金字塔(图10-6Ba)。但是,如果较低营养级上的生物显著地小于较高营养级上的生物,那么生物量金字塔可能是反向的。例如,在生产者个体很小而消费者相当大的地方,任
17、何时刻后者的总生物量都可能比前者大(图10-6Bb)。在这种情况下,虽然通过生产者级的能量流同样大于通过消费者级的能量流,但由于体小的生产者以快速的代谢和周转完成了较大的输出因而它们只有较小的现存量。就大多数水域来看,在初级生产力高的时期内,浮游植物的现存量通常超过浮游动物,但是在冬季可能出现相反的情况(图10-6Bc)。第34页,此课件共72页哦能量金宇塔在三种类型的生态金字塔中,只有能量金宇塔可以给群落的功能特性以最好的综合性描述。这是因为,任何情况下任何一个营养级上可以维持的现存量,并不决定于前一个营养级上任何时刻所贮存的能量,而是由该营养级上的能量贮存率所决定的。数量和生物量金字塔都是
18、对任何时刻所存在的生物这一静止状态的描述,它们的形态往往因生物个体的大小和代谢率不同而有很大的变化。相反,能量金字塔所描述的是能量通过食物链的速率,它的形态不受生物个体的大小和代谢串变化的影响。因此,无论在什么情况下,能量金字塔都是正向的形态。第35页,此课件共72页哦数量锥体以各个营养级的生物个体数量进行比较,忽视了生物量因素,一些生物的数量可能很多,但生物量却不一定大,在同一营养级上不同物种的个体大小也是不一样的。生物量锥体以各营养级的生物量进行比较,过高强调了大型生物的作用。能量锥体表示各营养级能量传递、转化的有效程度,不仅表明能量流经每一层次的总量,同时,表明了各种生物在能流中的实际作
19、用和地位,可用来评价各个生物种群在生态系统中的相对重要性。能量锥体排除了个体大小和代谢速率的影响,以热力学定律为基础,较好地反映了生态系统内能量流动的本质关系。第36页,此课件共72页哦生态效率在生产力生态学研究中,估计各个环节的能量传递效率是很有用的。能流过程中各个不同点上能量之比值,可以称为传递效率(transferefficiency)。Odum曾称之为生态效率,但一般把林德曼效率称为生态效率。由于对生态效率曾经给过不少定义,而且名词比较混乱,Kozlovsky(1969)曾加以评述,提出最重要的几个,并说明其相互关系。摄食量(I):表示一个生物所摄取的能量;对植物来说,它代表光合作用所
20、吸收的日光能;对于动物来说,它代表动物吃进的食物的能量。同化量(A):对于动物来说,同化量表示消化道后吸收的能量(吃进的食物不一定都能吸收)。对分解者来说是指细胞外的吸收能量;对植物来说是指在光合作用中所固定的日光能,即总初级生产量(GP)。呼吸量(R):指生物在呼吸等新陈代谢和各种活动中所消耗的全部能量。生产量(P):指生物在呼吸消耗后净剩的同化能量值,它以有机物质的形式累积在生物体内或生态系统中。对植物来说,它是净初级生产量(NP);对动物来说,它是同化量扣除维持呼吸量以后的能量值,即P=A-R。可利用以上这些参数可以计算生态系统中能流的各种效率。一般认为,生态效率为10%20%。最重要的
21、是下面3个:第37页,此课件共72页哦同化效率(assimilationefficiency)指植物吸收的日光能中被光合作用所固定的能量比例,或被动物摄食的能量中被同化了的能量比例。同化效率=被植物固定的能量/植物吸收的日光能或=被动物消化吸收的能量/动物摄食的能量第38页,此课件共72页哦生产效率(productionefficiency)指形成新生物量的生产能量占同化能量的百分比。生产效率=n营养级的净生产量/n营养级的同化能量有时人们还分别使用组织生长效率(即前面所指的生长效率)和生态生长效率,则生态生长效率=n营养级的净生产量/n营养级的摄入能量第39页,此课件共72页哦消费效率(co
22、nsumptionefficiency)指n+1营养级消费(即摄食)的能量占n营养级净生产能量的比例。消费效率=n+1营养级的消费能量/n营养级的净生产量第40页,此课件共72页哦利用效率人们往往对高一营养级的种群(如食草动物)利用低一级(如植物)的效率感兴趣,如At/Pt-1,即后一营养级的同化量或摄食量与前一营养级的产量的百分比,称为利用效率。如:A2/P1=33.7/88.3=38.1%;A3/P2=3.80/14.8=25.6%;A4/P3=0.21/0.67=31.3%.第41页,此课件共72页哦所谓林德曼效率(Lindemansefficiency)是指n+1营养级所获得的能量占n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三节 生态系统 能量 流动 课件
限制150内