计量经济学3第三章-多元线性回归模型及非线性回归模型new上课讲义.ppt
《计量经济学3第三章-多元线性回归模型及非线性回归模型new上课讲义.ppt》由会员分享,可在线阅读,更多相关《计量经济学3第三章-多元线性回归模型及非线性回归模型new上课讲义.ppt(81页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、计量经济学3第三章-多元线性回归模型及非线性回归模型new分析中国汽车行业未来的趋势分析中国汽车行业未来的趋势,应具体分析这样一些问题:应具体分析这样一些问题:中国汽车市场发展的状况如何?中国汽车市场发展的状况如何?(用销售量观测)(用销售量观测)影响中国汽车销量的主要因素是什么?影响中国汽车销量的主要因素是什么?(如收入、价格、费用、道路状况、能源、政策环境等)(如收入、价格、费用、道路状况、能源、政策环境等)各种因素对汽车销量影响的性质怎样?各种因素对汽车销量影响的性质怎样?(正、负)(正、负)各种因素影响汽车销量的具体数量关系是什么?各种因素影响汽车销量的具体数量关系是什么?所得到的数量
2、结论是否可靠?所得到的数量结论是否可靠?中国汽车行业今后的发展前景怎样?应当如何制定汽车的中国汽车行业今后的发展前景怎样?应当如何制定汽车的产业政策?产业政策?很明显,只用一个解释变量已很难分析汽车产业的发展很明显,只用一个解释变量已很难分析汽车产业的发展,还需要寻求有更多个解释变量情况的回归分析方法。还需要寻求有更多个解释变量情况的回归分析方法。怎样分析多种因素的影响?怎样分析多种因素的影响?2 本章主要讨论本章主要讨论:多元线性回归模型及古典假定多元线性回归模型及古典假定 多元线性回归模型的估计多元线性回归模型的估计 多元线性回归模型的检验多元线性回归模型的检验 多元线性回归模型的预测多元
3、线性回归模型的预测3 第一节第一节 多元线性回归模型及古典假定多元线性回归模型及古典假定 一、多元线性回归模型的意义一、多元线性回归模型的意义 一般形式:对于有一般形式:对于有K-1个解释变量的线性回归模型个解释变量的线性回归模型 注意:注意:模型中的模型中的 (j=1,2,-k)是是偏回归系数偏回归系数 样本容量为样本容量为n 偏回归系数偏回归系数:控控制制其其它它解解释释量量不不变变的的条条件件下下,第第j j个个解解释释变变量量的的单单位位变变动动对对被被解解释释变变量量平平均均值值的的影影响响,即即对对Y Y平平均均值值“直直接接”或或“净净”的影响。的影响。4 4多元线性回归中的多元
4、线性回归中的“线性线性”指对各个回归系数而言是指对各个回归系数而言是“线性线性”的,对变量则可的,对变量则可以是线性的,也可以是非线性的以是线性的,也可以是非线性的例如:生产函数例如:生产函数取对数取对数这也是多元线性回归模型,只是这时变量为这也是多元线性回归模型,只是这时变量为lnY、lnL、lnK5多元总体回归函数多元总体回归函数条件期望表现形式:条件期望表现形式:将将Y Y的总体条件期望表示为多个解释变量的函数,如的总体条件期望表示为多个解释变量的函数,如:注意:这时注意:这时Y总体条件期望的轨迹是总体条件期望的轨迹是K维空间的一条线维空间的一条线个别值表现形式:个别值表现形式:引入随机
5、扰动项引入随机扰动项或表示为或表示为 6多元样本回归函数多元样本回归函数Y的样本条件均值可表示为多个解释变量的函数的样本条件均值可表示为多个解释变量的函数或回归剩余(残差):或回归剩余(残差):其中其中 7 二、多元多元线性回性回归模型的矩模型的矩阵表示表示 多个解释变量的多元线性回归模型的多个解释变量的多元线性回归模型的n组样本观测值,可组样本观测值,可表示为表示为 用矩阵表示用矩阵表示 8 8总体回归函数总体回归函数或或样本回归函数样本回归函数或或 其中:其中:都是有都是有n个元素的列向量个元素的列向量是有是有k 个个元素的列向量元素的列向量(k=解释变量个数解释变量个数+1)是第一列为是
6、第一列为1的的nk阶解释变量阶解释变量数据矩阵数据矩阵,(截距项可视为解释变量总是取值为截距项可视为解释变量总是取值为1)矩阵表示方式9 三、多元三、多元线性回性回归中的基本假定中的基本假定 假定假定1:零均值假定零均值假定 (i=1,2,-n)或 E(u)=0 假定假定2和假定和假定3:同方差和无自相关假定同方差和无自相关假定:或用方差或用方差-协方差矩阵表示为协方差矩阵表示为:(i=j)(ij)010假定假定5:无多重共线性假定无多重共线性假定 (多元中增加的多元中增加的)假假定定各各解解释释变变量量之之间间不不存存在在线线性性关关系系,或或各各个个解解释变量观测值之间线性无关。或解释变量
7、观测值释变量观测值之间线性无关。或解释变量观测值 矩阵矩阵X的秩为的秩为K(注意注意X为为n行K列列)。Ran(X)=k Rak(XX)=k 即即 (XX)可逆可逆 假定假定6:正态性假定正态性假定11假定假定4:随机扰动项与解释变量不相关随机扰动项与解释变量不相关11 第二第二节 多元多元线性回性回归模型的估模型的估计一、普通最小二乘法一、普通最小二乘法(OLSOLS)原则:原则:寻求寻求剩余平方和最小的参数估计式剩余平方和最小的参数估计式 即求偏导,并令其为0 其中即 12 用矩阵表示的正规方程偏导数偏导数因为样本回归函数为因为样本回归函数为 两边左乘两边左乘根据最小二乘原则根据最小二乘原
8、则则正规方程为则正规方程为13 OLS OLS估计式估计式 由正规方程由正规方程多元回归的多元回归的OLS估计量为估计量为当只有两个解释变量时为:当只有两个解释变量时为:注意:注意:为为X、Y的离差的离差对比对比简单线性回归中简单线性回归中14OLSOLS回回归线的数学性的数学性质 (与与简单线性回性回归相同相同)回归线通过样本均值回归线通过样本均值 估计值估计值 的均值等于实际观测值的均值等于实际观测值 的均值的均值 剩余项剩余项 的均值为零的均值为零 被解释变量估计值被解释变量估计值 与剩余项与剩余项 不相关不相关 解释变量解释变量 与剩余项与剩余项 不相关不相关 (j=1,2,-k)15
9、15二二、OLSOLS估估计式的式的统计性性质 1、线性线性特征 是是Y的的线线性性函函数数,因因 是是非非随随机机或或取取固固定值的矩阵定值的矩阵 2、无偏无偏特性 (证明见教材证明见教材P101附录附录3.1)3、最小方差最小方差特性 在在 所有的线性无偏估计中,所有的线性无偏估计中,OLS估计估计 具有最小方差具有最小方差 (证明见教材证明见教材P101或附录或附录3.2)结论:结论:在古典假定下,多元线性回归的在古典假定下,多元线性回归的 OLS估估 计式是最佳线性无偏估计式(计式是最佳线性无偏估计式(BLUE)16 三、三、OLSOLS估计的分布性质估计的分布性质基本思想基本思想:是
10、是随随机机变变量量,必必须须确确定定其其分分布布性性质质才才可可能能进进行行区区间间估计和假设检验估计和假设检验 是服从正态分布的随机变量,是服从正态分布的随机变量,决定了决定了Y Y也是服从正态分布的随机变量也是服从正态分布的随机变量 是是Y Y的的线线性性函函数数,决决定定了了 也也是是服服从从正正态态分分布布的的随机变量随机变量17 的期望的期望 (由无偏性由无偏性)的方差和标准误差:的方差和标准误差:可以证明可以证明 的方差的方差协方差矩阵为协方差矩阵为(见下页)(见下页)这里的这里的(其中(其中 是矩阵是矩阵 中第中第 j 行第行第 j 列的元素)列的元素)所以所以 (j=1,2,-
11、k)的期望与方差18其中:其中:(由无偏性由无偏性)(由同方差性由同方差性)(由由OLS估计式估计式)19注意注意是向量是向量的方差的方差-协方差协方差19 四、四、随机随机扰动项方差方差 的估的估计 一般未知,可证明多元回归中一般未知,可证明多元回归中 的无偏的无偏 估计为:估计为:(证明见证明见P103附录附录3.3)或表示为或表示为 将将 作标准化变换:作标准化变换:20对比对比:一元回归中一元回归中20五、五、回归系数的区间估计回归系数的区间估计 由于由于给定给定,查,查t分布表的自由度为分布表的自由度为n-k 的临界值的临界值或或或表示为或表示为2121 第三第三节多元多元线性回性回
12、归模型的模型的检验一、多元回归的拟合优度检验一、多元回归的拟合优度检验 多重可决系数多重可决系数:在多元回归模型中,由各个解释在多元回归模型中,由各个解释 变量联合起来解释了的变量联合起来解释了的Y的变差,在的变差,在Y的总变差中占的总变差中占 的比重,用的比重,用 表示表示 与简单线性回归中可决系数与简单线性回归中可决系数 的区别只是的区别只是 不同不同多元回归中多元回归中多重可决系数可表示为多重可决系数可表示为 (注意注意:红色字体是与一元回归不同的部分红色字体是与一元回归不同的部分)2222 多重可决系数的矩阵表示多重可决系数的矩阵表示 可用代数式表达为可用代数式表达为 特点特点:多重可
13、决系数是模型中解释变量个数的不减函多重可决系数是模型中解释变量个数的不减函 数数,这这给给对对比比不不同同模模型型的的多多重重可可决决系系数数带带来来缺缺陷陷,所所以需要修正。以需要修正。23修正的可决系数修正的可决系数思想:思想:可决系数只涉及变差,没有考虑可决系数只涉及变差,没有考虑自由度自由度。如果用自由度去校正所计算的变差,可纠如果用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难。正解释变量个数不同引起的对比困难。回顾回顾:自由度自由度:统计量的自由度指可自由变化的样本观统计量的自由度指可自由变化的样本观测值个数,它等于所用样本观测值的个测值个数,它等于所用样本观测值的
14、个数减去对观测值的约束个数数减去对观测值的约束个数。24可决系数的修正方法可决系数的修正方法 总变差总变差TSS自由度为自由度为n-1解释了的变差解释了的变差ESS自由度为自由度为k-1剩余平方和剩余平方和RSS自由度为自由度为n-k修正的可决系数为修正的可决系数为 25 修正的可决系数修正的可决系数 与可决系数与可决系数 的关系的关系 已经导出:已经导出:注意:注意:可可决决系系数数 必必定定非非负负,但但所所计计算算的的修修正正可可决决系系数数 有可能为负值有可能为负值 解决办法:解决办法:若计算的若计算的 ,规定,规定 取值为取值为0 0 2627二、回二、回归方程的方程的显著性著性检验
15、(F检验)基本思想:基本思想:在多元回归中包含多个解释变量,它们与被解释在多元回归中包含多个解释变量,它们与被解释变量是否有显著关系呢?变量是否有显著关系呢?当然可以分别检验各个解释变量对被解释变量影当然可以分别检验各个解释变量对被解释变量影响的显著性。响的显著性。但但是是我我们们首首先先关关注注的的是是所所有有解解释释变变量量联联合合起起来来对对被被解解释释变变量量影影响响的的显显著著性性,或或整整个个方方程程总总的的联联合合显显著著性性,需需要要对对方方程程的的总总显显著著性性在在方方差差分分析析的的基基础础上上进进行行F F检检验验。27原假设原假设:(所有所有解释变量联合起来对被解释变
16、量的影响不显著)解释变量联合起来对被解释变量的影响不显著)备择假设备择假设:不全为不全为0建立统计量建立统计量(可以证明可以证明):给定显著性水平给定显著性水平 ,查,查F分布表中自由度为分布表中自由度为 k-1 和和 n-k 的临界值的临界值 ,并通过样本观测,并通过样本观测值计算值计算F值值2828如果计算的如果计算的F值大于临界值值大于临界值 ,则拒绝则拒绝 ,说说明明回回归归模模型型有有显显著著意意义义,即所有解释变量联合起来对即所有解释变量联合起来对Y确有显著影响。确有显著影响。如果计算的如果计算的F值小于临界值值小于临界值 ,则不拒绝,则不拒绝 ,说明回归模型没有显著,说明回归模型
17、没有显著 意义,即所有解释变量联合起来对意义,即所有解释变量联合起来对Y没有显著影响。没有显著影响。29三、各回三、各回归系数的假系数的假设检验注意注意:在一元回归中在一元回归中F F检验与检验与t t检验等价检验等价,且且 (见教材见教材P87证明证明)但在多元回归中,但在多元回归中,F检验显著,不一定每个解释变量都对检验显著,不一定每个解释变量都对Y有显著影响。还需要分别检验有显著影响。还需要分别检验当其他解释变量保持不变当其他解释变量保持不变时时,各个解释变量,各个解释变量X对被解释变量对被解释变量Y是否有显著影响。是否有显著影响。方法:方法:原假设原假设 (j=1,2,k)备择假设备择
18、假设 统计量统计量t为:为:30给定显著性水平给定显著性水平,查,查t t分布表的临界值为分布表的临界值为如果如果 就不拒绝就不拒绝 ,而拒绝,而拒绝 即认为即认为 所对应的解释变量所对应的解释变量 对被解释变量对被解释变量Y Y的影响不显著。的影响不显著。如果如果 就拒绝就拒绝 而不拒绝而不拒绝 即即认认为为 所所对对应应的的解解释释变变量量 对对被被解解释释变变量量Y Y的的影影响响是是显显著的。著的。对各回归系数假设检验的作法31第四第四节多元多元线性回性回归模型的模型的预测 一、被解释变量平均值预测一、被解释变量平均值预测1.Y Y平均值的点预测平均值的点预测 方法:方法:将解释变量预
19、测值代入估计的方程:将解释变量预测值代入估计的方程:多元回归时:多元回归时:或或注意注意:预测期的预测期的 是第一个元素为是第一个元素为1 1的的行向量行向量,不是矩不是矩阵阵,也不是列向量也不是列向量 32 2.Y Y平均值的区间预测平均值的区间预测基本思想基本思想:(与简单线性回归时相同)(与简单线性回归时相同)由于存在抽样波动,预测的平均值由于存在抽样波动,预测的平均值不一定不一定等于真实平均值等于真实平均值,还需要对,还需要对作区间估计。作区间估计。为了对为了对Y作区间预测,必须确定平均值预测值作区间预测,必须确定平均值预测值的抽样分布。的抽样分布。必须找出与必须找出与和和都有关的统计
20、量都有关的统计量,并要明确其概率分布性质。并要明确其概率分布性质。3333区间预测的具体作法区间预测的具体作法当当未知未知时,只得用时,只得用代替,这时代替,这时简单线性回归中简单线性回归中(回顾简单线性回归回顾简单线性回归)3434 多元回归时,与预测的平均值多元回归时,与预测的平均值 和真实平均值和真实平均值 都有关的是二者的偏差都有关的是二者的偏差 :服从正态分布,可证明服从正态分布,可证明 用用 代替代替 ,可构造,可构造 t t 统计量统计量区间预测的具体作法(多元时)区间预测的具体作法(多元时)35或者 服从正态分布,可证明服从正态分布,可证明 即即标准化标准化当用当用 代替代替
21、时时,可构造,可构造 t 统计量统计量3636 给定显著性水平给定显著性水平,查,查t分布表,得自由度为分布表,得自由度为n-k的的临界值临界值,则,则或或区间预测的具体作法区间预测的具体作法37二、被解二、被解释变量个量个别值预测 基本思想:基本思想:(与简单线性回归时相同)(与简单线性回归时相同)由由于于存存在在随随机机扰扰动动 的的影影响响,Y的的平平均均值值并并不不等等于于Y的个别值。的个别值。为为了了对对Y的的个个别别值值 作作区区间间预预测测,需需要要寻寻找找与与预预测测值值 和个别值和个别值 有关的统计量,并要明确其概率分布性质。有关的统计量,并要明确其概率分布性质。38 已已知
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 第三 多元 线性 回归 模型 非线性 new 上课 讲义
限制150内