最优化方法线性规划的单纯形法.pptx
《最优化方法线性规划的单纯形法.pptx》由会员分享,可在线阅读,更多相关《最优化方法线性规划的单纯形法.pptx(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1康托罗维奇,.苏联经济学家,苏联科学院院士,最优计划理论的创始人。1912年生,1930年毕业于列宁格勒大学物理数学系,1935年获数学博士学位。1964年被选为苏联科学院院士。因提出资源最大限度分配理论,1975年与美籍荷兰学者T.C.库普曼斯一起获得诺贝尔经济学奖金。康托罗维奇的主要贡献是把线性规划用于经济管理,创立了最优计划理论。对有效利用资源和提高企业经济效益起了重大作用。他还提出经济效果的概念和衡量经济效果的统一指标体系,作为经济决策的定量依据,来选择最合理的社会生产结构。主要著作有生产组织与计划的数学方法(1939)、资源最优利用的经济计算(1959)、最优计划的动态模型(196
2、4)等。第1页/共52页2佳林库普曼斯(1910年1985年),美国人,1910年8月28日生于荷兰,1940年离开荷兰移居美国。1975年,他和康托罗维奇同时获得诺贝尔经济学奖。线性规划经济分析法的创立者。第2页/共52页3冯诺依曼(匈牙利语:NeumannJnos;英语:JohnvonNeumann,1903年12月28日1957年2月8日)是出生于匈牙利的美国籍犹太人数学家,现代电子计算机创始人之一。他在计算机科学、经济、物理学中的量子力学及几乎所有数学领域都作过重大贡献。冯诺伊曼从小就显示出数学天才,关于他的童年有不少传说。大多数的传说都讲到冯诺伊曼自童年起在吸收知识和解题方面就具有惊
3、人的速度。六岁时他能心算做八位数乘除法,八岁时掌握微积分,十二岁就读懂领会了波莱尔的大作函数论要义。冯诺伊曼记忆力惊人,读书过目成涌,自幼爱好历史学,他的历史知识堪称渊博,宛如百科全书。第3页/共52页4他的父亲由于考虑到经济上原因,请人劝阻年方17的冯诺依曼不要专攻数学,后来父子俩达成协议,冯诺依曼便去攻读化学。其后的四年间,冯诺依曼在布达佩斯大学注册为数学方面的学生,但并不听课,只是每年按时参加考试。1926年他在苏黎世的获得化学方面的大学毕业学位,他也获得了布达佩斯大学数学博士学位。当他结束学生时代的时候,他已经漫步在数学、物理、化学三个领域的某些前沿。1926年春,冯诺依曼到哥廷根大学
4、任希尔伯特的助手。中学时,他的老师认为按传统的办法教冯诺依曼中学数学课程将是毫无意义的,他接受了大学教师的单独的数学训练。1921年,已被大家当作数学家了。他的第一篇论文是和菲克特合写的,那时他还不到18岁。l933年担任普林斯顿高级研究院教授,当时高级研究院聘有六名教授,其中就包括爱因斯坦,而年仅30岁的冯诺依曼是他们当中最年轻的一位。第4页/共52页5冯诺伊曼是二十世纪最重要的数学家之一,在纯粹数学和应用数学方面都有杰出的贡献。他研究希尔伯特空间上线性自伴算子谱理论,为量子力学打下数学基础;运用紧致群解决了希尔伯特第五问题;他和默里创造了算子环理论,即现在所谓的冯诺伊曼代数。1940年以后
5、,冯诺伊曼转向应用数学。在力学、经济学、数值分析和电子计算机方面作出了卓越贡献。第二次世界大战时冯诺伊曼因战事需要建立冲击波理论和湍流理论,发展了流体力学;从1942年起,他同莫根施特恩合作,写作博弈论和经济行为一书,使他成为数理经济学的奠基人之一。冯诺伊曼对世界上第一台电子计算机ENIAC的设计有决定性的影响,被称为“计算机之父”。他是现代数值分析计算数学的缔造者之一。第5页/共52页62 线性规划的标准型和基本概念线性规划的标准型和基本概念p 线性规划问题及其数学模型线性规划问题及其数学模型p 线性规划的图解法线性规划的图解法p 线性规划的标准形式线性规划的标准形式p 标准型线性规划的解的
6、概念标准型线性规划的解的概念p 线性规划的基本理论线性规划的基本理论第6页/共52页n 问题的提出:问题的提出:在在生生产产管管理理的的经经营营活活动动中中,通通常常需需要要对对“有有限限的的资资源源”寻寻求求“最佳最佳”的利用或分配方式。的利用或分配方式。l有限资源:劳动力、原材料、设备或资金等有限资源:劳动力、原材料、设备或资金等 l最佳:有一个标准或目标,使利润达到最大或成本达到最小。最佳:有一个标准或目标,使利润达到最大或成本达到最小。有限资源的合理配置有两类问题有限资源的合理配置有两类问题l如何合理的使用有限的资源,使生产经营的效益达到最大;如何合理的使用有限的资源,使生产经营的效益
7、达到最大;l在生产或经营的任务确定的条件下,合理的组织生产,安排经在生产或经营的任务确定的条件下,合理的组织生产,安排经营活动,使所消耗的资源数最少。营活动,使所消耗的资源数最少。p线性规划问题及其数学模型第7页/共52页例例,某制药厂生产甲、乙两种药品,生产这两种药品要消耗某种某制药厂生产甲、乙两种药品,生产这两种药品要消耗某种维生素。生产每吨药品所需要的维生素量,所占用的设备时间,以维生素。生产每吨药品所需要的维生素量,所占用的设备时间,以及该厂每周可提供的资源总量如下表所示:及该厂每周可提供的资源总量如下表所示:每吨产品的消耗每吨产品的消耗 每周资源总量每周资源总量 甲甲乙乙维生素(公斤
8、)维生素(公斤)30302020160160设备(台班)设备(台班)5 51 11515已知该厂生产每吨甲、乙药品的利润分别为5万元和2万元。但根据市场需求调查的结果,甲药品每周的产量不应超过4吨。问该厂应如何安排两种药品的产量才能使每周获得的利润最大?第8页/共52页 定义定义x x1 1为生产甲种药品的计划产量数,为生产甲种药品的计划产量数,x x2 2为生产乙种药品的计划产量数。为生产乙种药品的计划产量数。数学模型为数学模型为 s.t.s.t.(subject to)subject to)(such that)(such that)每吨产品的消耗每吨产品的消耗 每周资源总量每周资源总量
9、甲甲乙乙维生素(公斤)维生素(公斤)30302020160160设备(台班)设备(台班)5 51 11515单位利润(万元)单位利润(万元)5 5第9页/共52页10例2 2 靠近某河流有两个化工厂,流经第一化工厂的河流流量为每天500500万m m3 3,在两个工厂之间有一条流量为200200万m m3 3的支流。两化工厂每天排放某种有害物质的工业污水分别为2 2万m m3 3和1.41.4万m m3 3。从第一化工厂排出的工业污水流到第二化工厂以前,有20%20%可以自然净化。环保要求河流中工业污水含量不能大于0.2%0.2%。两化工厂处理工业污水的成本分别为10001000元/万m m3
10、 3和800800元/万m m3 3。现在要问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂处理工业污水的费用最小工厂1工厂2200万m3500万m3第10页/共52页11决策变量:x1、x2分别代表工厂1和工厂2处理污水的数量(万m3)。则目标函数:min z=1000 x1+800 x2约束条件:第一段河流(工厂1工厂2之间):(2x1)/500 0.2%第二段河流:0.8(2x1)+(1.4x2)/7000.2%此外有:x12;x21.4化简有:min z=1000 x1+800 x2 x1 1 0.8x1+x2 1.6 x1 2 x21.4 x1、x20称之为上述问题的
11、数学模型。第11页/共52页例例,某某铁铁器器加加工工厂厂要要制制作作100100套套钢钢架架,每每套套要要用用长长为为2.92.9米米,2.12.1米米和和1.51.5米米的的圆圆钢钢各各一一根根。已已知知原原料料长长为为7.47.4米米,问问应应如如何何下下料,可使材料最省?料,可使材料最省?分分析析:在在长长度度确确定定的的原原料料上上截截取取三三种种不不同同规规格格的的圆圆钢钢,可可以以归纳出归纳出8 8种不同的下料方案:种不同的下料方案:圆钢(米)圆钢(米)2 29 91 12 20 01 10 01 10 00 02 21 10 00 02 22 21 11 13 30 01 15
12、 53 31 12 20 03 31 10 04 4料头(米)料头(米)0 00.10.10.20.20.30.30.80.80.90.91.1.1.41.4 问题归纳为如何混合使用这8种不同的下料方案,来制造100套钢架,且要使剩余的料头总长为最短。第12页/共52页设设x xj j表示用第表示用第j j种下料方案下料的原料根数,种下料方案下料的原料根数,j=1,2j=1,28,8,数学模型数学模型 s.t.s.t.这是一个下料问题,是在生产任务确定的条件下,合理的组织生产,这是一个下料问题,是在生产任务确定的条件下,合理的组织生产,使所消耗的资源数最少的数学规划问题。使所消耗的资源数最少的
13、数学规划问题。满足一组约束条件的同时,寻求变量满足一组约束条件的同时,寻求变量x x1 1至至x x8 8的值的值,使目标函数取得最使目标函数取得最 小值。小值。圆钢(米)圆钢(米)2 29 91 12 20 01 10 01 10 00 02 21 10 00 02 22 21 11 13 30 01 15 53 31 12 20 03 31 10 04 4料头(米)料头(米)0 00.10.10.20.20.30.30.80.80.90.91.11.11.41.4且为整数第13页/共52页n 线性规划的一般数学模型线性规划的一般数学模型 线性规划模型的特征:线性规划模型的特征:(1 1)用
14、一组决策变量)用一组决策变量x x1 1,x x2 2,x xn n表示某一方案,且在一般情况下,表示某一方案,且在一般情况下,变量的取值是非负的。变量的取值是非负的。(2 2)有有一一个个目目标标函函数数,这这个个目目标标函函数数可可表表示示为为这这组组变变量量的的线线性性函函数。数。(3 3)存在若干个约束条件,约束条件用决策变量的线性等式或线)存在若干个约束条件,约束条件用决策变量的线性等式或线性不等式来表达。性不等式来表达。(4 4)要求目标函数实现极大化()要求目标函数实现极大化(maxmax)或极小化()或极小化(minmin)。)。满足上述满足上述4 4个特征的规划问题称为线性规
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化 方法 线性规划 单纯
限制150内