六年级下数学广角4.ppt
《六年级下数学广角4.ppt》由会员分享,可在线阅读,更多相关《六年级下数学广角4.ppt(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、六年级数学下册六年级数学下册数学广角数学广角抽屉原理抽屉原理 在有些问题中在有些问题中在有些问题中在有些问题中,“抽屉抽屉抽屉抽屉”和和和和“苹果苹果苹果苹果”不是很明显不是很明显不是很明显不是很明显,需要我们制造出需要我们制造出需要我们制造出需要我们制造出“抽屉抽屉抽屉抽屉”和和和和“苹果苹果苹果苹果”.制造出制造出制造出制造出“抽屉抽屉抽屉抽屉”和和和和“苹果苹果苹果苹果”是比较困难的是比较困难的是比较困难的是比较困难的,这一方面需要同学们去这一方面需要同学们去这一方面需要同学们去这一方面需要同学们去分析题目中的分析题目中的分析题目中的分析题目中的 条件和问题条件和问题条件和问题条件和问题
2、,另一方面需要多做另一方面需要多做另一方面需要多做另一方面需要多做 一些题来积累经验一些题来积累经验一些题来积累经验一些题来积累经验.突破突破1:要解决抽屉问题,关键要弄清楚把什么看要解决抽屉问题,关键要弄清楚把什么看成抽屉,有多少个。若题目明确的抽屉和成抽屉,有多少个。若题目明确的抽屉和有多少个抽屉,需要先分析,再用抽屉原有多少个抽屉,需要先分析,再用抽屉原理说明。理说明。例例1:敬老院买来许多苹果、橘子和梨,每位老人任意:敬老院买来许多苹果、橘子和梨,每位老人任意先两个,那么,至少应有几位老人才能保证必有两位先两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?或两位
3、以上老人所选的水果相同?这里,我们可以把敬老院老人人数看作抽屉原理中的物体,关键是这里,我们可以把敬老院老人人数看作抽屉原理中的物体,关键是要找抽屉数了,因为三种水果任选两个的搭配有要找抽屉数了,因为三种水果任选两个的搭配有6种,所以既然有种,所以既然有6个个“抽屉抽屉”,必须至少有,必须至少有7个个“物体物体”才能保证两个或两个以上的物体放在才能保证两个或两个以上的物体放在同一个抽屉里,即至少有同一个抽屉里,即至少有7位老人。位老人。6(21)1=7(位)(位)幼儿园小朋友分苹果、梨、橘子这三种水果。如果每个小朋友任幼儿园小朋友分苹果、梨、橘子这三种水果。如果每个小朋友任意拿意拿两个不同种类
4、的水果两个不同种类的水果,那么至少几个小朋友拿过后,才一定,那么至少几个小朋友拿过后,才一定能出现两人拿的水果是相同的?能出现两人拿的水果是相同的?变一变:变一变:幼儿园买来不少猪、狗、马塑料玩具,每个小朋友幼儿园买来不少猪、狗、马塑料玩具,每个小朋友任意选任意选择两件,择两件,那么至少要有几个小朋友选完后,才能保证有两那么至少要有几个小朋友选完后,才能保证有两人选的玩具相同?人选的玩具相同?变一变:变一变:1、元旦庆祝会上老师买来了很多水果糖和奶糖,每位、元旦庆祝会上老师买来了很多水果糖和奶糖,每位同学最多可以吃同学最多可以吃3块,也可以不吃。全班块,也可以不吃。全班56个人至少个人至少有多
5、少人吃的两种糖完全一样?有多少人吃的两种糖完全一样?提示:首先考虑选糖的几种可能性,选一种、两种、三种或不选的共有10种类型。把10种类型看成10个抽屉,56人看成物体,把56个物体放进10个抽屉里,用5610=5(人)6(块),51=6(人),因此至少有6人吃的两种糖完全一样。2、有、有50个学生共同参加体操表演,其中最小的个学生共同参加体操表演,其中最小的9岁,岁,最大的最大的12岁。参加体操表演的学生中是否一定有两个岁。参加体操表演的学生中是否一定有两个学生是在同年同月出生的?学生是在同年同月出生的?提示:从9岁到12岁共有4年,合48个月。把48个月看作抽屉,50个学生看作物体,根据“
6、抽屉原理”可知,参加体操表演的学生中一定有两个是在同年同月出生的。突破突破2:要求抽屉问题中的抽屉数,可用分放物体要求抽屉问题中的抽屉数,可用分放物体的总数减的总数减1再除以其中一个抽屉里至少有再除以其中一个抽屉里至少有的物体个数减的物体个数减1。例例2:把:把25个球最多放在几个盒子里,才能至少有一个球最多放在几个盒子里,才能至少有一个凳子里有个凳子里有7个球?个球?把盒子数看成抽屉数,要使其中一个抽屉里至少有把盒子数看成抽屉数,要使其中一个抽屉里至少有7个球。则球的个球。则球的个数应比抽屉数的(个数应比抽屉数的(71)倍多)倍多1个,而(个,而(251)(71)=4,所以,所以最多放进最多
7、放进4个盒子里,才能保证至少有一个盒子里有个盒子里,才能保证至少有一个盒子里有7个球。个球。变一变:变一变:把把16枝铅笔最多放入几个盒内,才能保枝铅笔最多放入几个盒内,才能保证至少有一个笔盒里的笔不少于证至少有一个笔盒里的笔不少于6枝。枝。提示:把提示:把16枝铅笔看作物体,要使其中一个抽屉里至少有枝铅笔看作物体,要使其中一个抽屉里至少有6枝,则枝,则铅笔的枝数应比抽屉数的确铅笔的枝数应比抽屉数的确5倍多倍多1个,而(个,而(161)(61)=3,所,所以最多放入以最多放入3个笔盒内,才能保证至少有一个笔盒里的笔不少于个笔盒内,才能保证至少有一个笔盒里的笔不少于6枝。枝。突破突破3:利用利用
8、“最不利原则最不利原则”解决问题。解决问题。例例3:一个袋子里装有红、黄、蓝袜子各:一个袋子里装有红、黄、蓝袜子各5只,问一次只,问一次至少取出多少只才能保证每种颜色至少有一只?至少取出多少只才能保证每种颜色至少有一只?思路导航:我们从思路导航:我们从“最不利原则最不利原则”的角度去考虑。如果先取的角度去考虑。如果先取5只全只全是红的,那么只好再取是红的,那么只好再取5只,假设只,假设5只又全是黄的,这时,再取只又全是黄的,这时,再取1只一定只一定是蓝的了,这样取是蓝的了,这样取521=11(只)才能保证每种颜色至少有(只)才能保证每种颜色至少有1只。只。变一变:变一变:421=9(张)(张)
9、教师拿出红桃、黑桃、方片三处颜色的教师拿出红桃、黑桃、方片三处颜色的扑克各扑克各4张,问一次至少摸出多少张才能张,问一次至少摸出多少张才能保证每种颜色至少有一张?保证每种颜色至少有一张?突破突破3:根据题意巧设抽屉,解决问题。根据题意巧设抽屉,解决问题。例例4:从:从110这这10个数中任选个数中任选6个数,其中一定有两个数,其中一定有两个数的和是个数的和是11。你能说出其中运用了什么道理吗?。你能说出其中运用了什么道理吗?思路导航:根据题意思路导航:根据题意“其中一定有两个数的和是其中一定有两个数的和是11”可以把可以把1至至10分分成(成(1,10)、()、(2,9)、()、(3,8)、(
10、)、(4,7)、()、(5,6)这样的)这样的5组,组,即即5个抽屉。而任选个抽屉。而任选6个数就是被分物。则有个数就是被分物。则有65=11,所以任取,所以任取6个个数,至少有数,至少有2个数是同一组的,则和必定是个数是同一组的,则和必定是11。此题利用了抽屉原理。此题利用了抽屉原理。变一变:变一变:任意任意5个不相同的自然数,其中至少有两个不相同的自然数,其中至少有两个数的差是个数的差是4的倍数,这是为什么?的倍数,这是为什么?提示:一个自然数除以提示:一个自然数除以4的余数可能是的余数可能是0、1、2、3,所以把这,所以把这4种情种情况看作况看作4个抽屉,把任意个抽屉,把任意5个不相同的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 数学 广角
限制150内