9时间序列计量经济学模型的理论与方法(计量经济学(华gob.pptx
《9时间序列计量经济学模型的理论与方法(计量经济学(华gob.pptx》由会员分享,可在线阅读,更多相关《9时间序列计量经济学模型的理论与方法(计量经济学(华gob.pptx(61页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九章第九章时间序列计量经济学模型的理论与方法时间序列计量经济学模型的理论与方法第一节第一节 时间序列的平稳性及其检验时间序列的平稳性及其检验第二节第二节 随机时间序列模型的识别和估计随机时间序列模型的识别和估计第三节第三节 协整分析与误差修正模型协整分析与误差修正模型9.1 9.1 时间序列的平稳性及其检验时间序列的平稳性及其检验一、问题的引出:非平稳变量与经典回归一、问题的引出:非平稳变量与经典回归模型模型二、时间序列数据的平稳性二、时间序列数据的平稳性三、平稳性的图示判断三、平稳性的图示判断四、平稳性的单位根检验四、平稳性的单位根检验五、单整、趋势平稳与差分平稳随机过程五、单整、趋势平稳
2、与差分平稳随机过程一、问题的引出:非平稳变量与经典一、问题的引出:非平稳变量与经典回归模型回归模型常见的数据类型常见的数据类型到目前为止,经典计量经济模型常用到的数据有:到目前为止,经典计量经济模型常用到的数据有:时间序列数据时间序列数据(time-series data);截面数据截面数据(cross-sectional data)平行平行/面板数据面板数据(panel data/time-series cross-section data)时间序列数据是最常见,也是最常用到的数据时间序列数据是最常见,也是最常用到的数据。经典回归模型与数据的平稳性经典回归模型与数据的平稳性经典回归分析经典回
3、归分析暗含暗含着一个重要着一个重要假设假设:数据是平稳的。数据是平稳的。数据非平稳数据非平稳,大样本下的统计推断基础,大样本下的统计推断基础“一致一致性性”要求要求被破怀。被破怀。经典回归分析的假设之一:解释变量经典回归分析的假设之一:解释变量X是非随机变是非随机变量量放宽该假设:放宽该假设:X是随机变量,则需进一步要求:是随机变量,则需进一步要求:(1)X与随机扰动项与随机扰动项 不相关不相关 Cov(X,)=0依概率收敛:依概率收敛:(2)第(2)条是为了满足统计推断中大样本下的“一致性”特性:第(1)条是OLS估计的需要如果如果X是非平稳数据是非平稳数据(如表现出向上的趋势),(如表现出
4、向上的趋势),则(则(2)不成立,回归估计量不满足)不成立,回归估计量不满足“一致性一致性”,基,基于大样本的统计推断也就遇到麻烦。于大样本的统计推断也就遇到麻烦。因此:注意:注意:在双变量模型中:在双变量模型中:表现在表现在:两个本来没有任何因果关系的变量,却两个本来没有任何因果关系的变量,却有很高的相关性有很高的相关性(有较高的R2):例如:例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。在现实经济生活中在现实经济生活中:情况往往是实际的时间序列数据是非平稳的实际的时间序列数据是非平稳的,而且主要的经济变量如消
5、费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。系模型进行分析,一般不会得到有意义的结果。数据非平稳,往往导致出现数据非平稳,往往导致出现“虚假回归虚假回归”问题问题 时间序列分析时间序列分析模型方法模型方法就是在这样的情况下,以通过揭示时间序列自身的变化规律为主线而发以通过揭示时间序列自身的变化规律为主线而发展起来的全新的计量经济学方法论展起来的全新的计量经济学方法论。时间序列分析时间序列分析已组成现代计量经济学的重要内容,并广泛应用于经济分析与预测当中。二、时间序列数据的平稳性二、时间序列数据的平稳性 时间序
6、列分析中首先遇到的问题首先遇到的问题是关于时间序列数据的平稳性平稳性问题。假定某个时间序列是由某一假定某个时间序列是由某一随机过程随机过程(stochastic process)生成的,即假定时间序列)生成的,即假定时间序列Xt(t=1,2,)的每一个数值都是从一个概率分布中随机得到,如果的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:满足下列条件:1)均值)均值E(XE(Xt t)=)=是是与时间与时间t 无关的常数;无关的常数;2)方差)方差Var(XVar(Xt t)=)=2 2是是与时间与时间t 无关的常数;无关的常数;3)协方差)协方差Cov(XCov(Xt t,X,Xt
7、+kt+k)=)=k k 是是只与时期间隔只与时期间隔k有关,有关,与时间与时间t 无关的常数;无关的常数;则称该随机时间序列是则称该随机时间序列是平稳的平稳的(stationary),而该,而该随机过程是一随机过程是一平稳随机过程平稳随机过程(stationary stochastic process)。)。例例9.1.1一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=t ,tN(0,2)例例9.1.2另一个简单的随机时间列序被称为随随机机游走(游走(random walk),该序列由如下随机过程生成:Xt=Xt-1+t这里,t是一个白噪声。该序列常被称为是一个白噪声白噪声
8、(white noise)。由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的一个白噪声序列是平稳的。为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知 X1=X0+1 X2=X1+2=X0+1+2 X Xt t=X=X0 0+1+2+t 由于X0为常数,t是一个白噪声,因此Var(Xt)=t2 即即Xt的方差与时间的方差与时间t t有关而非常数,它是一非平稳序列。有关而非常数,它是一非平稳序列。容易知道该序列有相同的均值均值:E(Xt)=E(Xt-1)然而,对X取一阶差分一阶差分(first difference):Xt=Xt-Xt-1=t由于t是一个白
9、噪声,则序列Xt是平稳的。后面将会看到后面将会看到:如果一个时间序列是非平稳的,如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列它常常可通过取差分的方法而形成平稳序列。事事实实上上,随随机机游游走走过过程程是是下下面面我我们们称称之之为为1 1阶阶自自回回归归AR(1)AR(1)过程过程的特例的特例 X Xt t=X Xt-1t-1+t 不不难难验验证证:1)|1|1时时,该该随随机机过过程程生生成成的的时时间间序序列列是是发发散散的的,表表现现为为持持续续上上升升(1)1)或或持持续续下下降降(-1)1),因此是非平稳的;,因此是非平稳的;第二节中将证明第二节中将证明:只有
10、当只有当-1-1 10,样样本本自自相相关关系系数数近近似似地地服服从从以以0为均值,为均值,1/n 为方差的正态分布,其中为方差的正态分布,其中n为样本数。为样本数。也也可可检检验验对对所所有有k0k0,自自相相关关系系数数都都为为0 0的的联联合合假假设,这可通过如下设,这可通过如下Q QLBLB统计量进行:统计量进行:该统计量近似地服从自由度为m的2分布(m为滞后长度)。因此:如果计算的如果计算的Q Q值大于显著性水平值大于显著性水平为为 的临界值,则有的临界值,则有1-1-的把握拒绝所有的把握拒绝所有 k k(k0)(k0)同时为同时为0 0的假设。的假设。例例9.1.3:9.1.3:
11、表表9.1.19.1.1序列序列Random1Random1是通过是通过一随机过程(随机函数)生成的有一随机过程(随机函数)生成的有1919个样个样本的随机时间序列。本的随机时间序列。容易验证:该样本序列的均值为该样本序列的均值为0 0,方差为,方差为0.07890.0789。从图形看:它在其样本均值它在其样本均值0 0附近上下波动,且样本自相关附近上下波动,且样本自相关系数迅速下降到系数迅速下降到0 0,随后在,随后在0 0附近波动且逐渐收敛于附近波动且逐渐收敛于0 0。由于该序列由一随机过程生成,可以认为不存在序列相关性,因此该序列为一白噪声。该序列为一白噪声。根据Bartlett的理论:
12、kN(0,1/19)因此任一rk(k0)的95%的置信区间都将是 可以看出可以看出:k0k0时,时,r rk k的值确实落在了该区间内,的值确实落在了该区间内,因此可以接受因此可以接受 k k(k0)k0)为为0 0的假设的假设。同样地,从从Q QLBLB统计量的计算值看,滞后统计量的计算值看,滞后1717期的期的计算值为计算值为26.3826.38,未超过,未超过5%5%显著性水平的临界值显著性水平的临界值27.5827.58,因此,因此,可以接受所有的自相关系数可以接受所有的自相关系数 k k(k0)k0)都为都为0 0的假设。的假设。因此,该随机过程是一个平稳过程。该随机过程是一个平稳过
13、程。序列Random2是由一随机游走过程 Xt=Xt-1+t 生成的一随机游走时间序列样本。其中,第0项取值为0,t是由Random1表示的白噪声。样本自相关系数显示样本自相关系数显示:r1=0.48,落在了区间-0.4497,0.4497之外,因此在5%的显著性水平上拒绝1的真值为0的假设。该随机游走序列是非平稳的。该随机游走序列是非平稳的。图形表示出:图形表示出:该序列具有相同的均值,但从样本自相关图看,虽然自相关系数迅速下降到0,但随着时间的推移,则在0附近波动且呈发散趋势。图形:表现出了一个持续上升的过程图形:表现出了一个持续上升的过程,可,可初步判断初步判断是非平稳是非平稳的。的。样
14、本自相关系数:缓慢下降样本自相关系数:缓慢下降,再次表明它,再次表明它的的非平稳非平稳性。性。拒拒绝绝:该时间序列的自相关系数在滞后1期之后的值全部为0的假设。结论结论:19782000年间中国GDP时间序列是非平稳序列。从滞后从滞后18期的期的QLB统计量看:统计量看:QLB(18)=57.1828.86=20.05例例9.1.59.1.5 检验2.10中关于人均居民消费与人均国内生产总值这两时间序列的平稳性。原图 样本自相关图 从图形上看:从图形上看:人均居民消费(CPC)与人均国内生产总值(GDPPC)是非平稳的是非平稳的。从滞后从滞后1414期的期的QLB统计量看:统计量看:CPC与G
15、DPPC序列的统计量计算值均为57.18,超过了显著性水平为5%时的临界值23.68。再次表明它们的非平稳性。表明它们的非平稳性。就此来说,运用传统的回归方法建立它们的就此来说,运用传统的回归方法建立它们的回归方程是无实际意义的。回归方程是无实际意义的。不过,第三节中将看到,如果两个非平稳时不过,第三节中将看到,如果两个非平稳时间序列是间序列是协整协整的,则传统的回归结果却是有意义的,则传统的回归结果却是有意义的,而这两时间序列恰是的,而这两时间序列恰是协整协整的。的。四、平稳性的单位根检验四、平稳性的单位根检验 对时间序列的平稳性除了通过图形直观判断外,运用统计量进行统计检验则是更为准确与重
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 时间 序列 计量 经济学 模型 理论 方法 gob
限制150内