《异步电动机数学模型.pptx》由会员分享,可在线阅读,更多相关《异步电动机数学模型.pptx(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6.1异步电动机动态数学模型的性质l异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。(1)异步电动机变压变频调速时需要进行电压(或电流)和频率的协调控制,有电压(或电流)和频率两种独立的输入变量。在输出变量中,除转速外,磁通也是一个输出变量。第1页/共66页6.1异步电动机动态数学模型的性质(2)异步电动机无法单独对磁通进行控制,电流乘磁通产生转矩,转速乘磁通产生感应电动势,在数学模型中含有两个变量的乘积项。(3)三相异步电动机三相绕组存在交叉耦合,每个绕组都有各自的电磁惯性,再考虑运动系统的机电惯性,转速与转角的积分关系等,动态模型是一个高阶系统。第2页/共66页6.2 异步
2、电动机的三相数学模型l作如下的假设:(1)忽略空间谐波,三相绕组对称,产生的磁动势沿气隙按正弦规律分布。(2)忽略磁路饱和,各绕组的自感和互感都是恒定的。(3)忽略铁心损耗。(4)不考虑频率变化和温度变化对绕组电阻的影响。第3页/共66页6.2 异步电动机的三相数学模型l无论异步电动机转子是绕线型还是笼型的,都可以等效成三相绕线转子,并折算到定子侧,折算后的定子和转子绕组匝数相等。l异步电动机三相绕组可以是Y连接,也可以是连接。若三相绕组为连接,可先用Y变换,等效为Y连接。然后,按Y连接进行分析和设计。第4页/共66页6.2 异步电动机的三相数学模型图6-1 三相异步电动机的物理模型l定子三相
3、绕组轴线A、B、C在空间是固定的。l转子绕组轴线a、b、c随转子旋转。第5页/共66页6.2.1 异步电动机三相动态模型的数学表达式l异步电动机的动态模型由磁链方程、电压方程、转矩方程和运动方程组成。l磁链方程和转矩方程为代数方程l电压方程和运动方程为微分方程第6页/共66页磁链方程 l异步电动机每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和第7页/共66页自感l或写成l定子各相自感l转子各相自感第8页/共66页互感l绕组之间的互感又分为两类定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值;定子任一相与转子任一相之间的相对位置是变化的,互感是角位移的函数。第9页/共
4、66页定子三相间或转子三相间互感l三相绕组轴线彼此在空间的相位差l互感 l定子三相间或转子三相间互感第10页/共66页定、转子绕组间的互感 l由于相互间位置的变化可分别表示为l当定、转子两相绕组轴线重合时,两者之间的互感值最大 第11页/共66页磁链方程l磁链方程,用分块矩阵表示 式中第12页/共66页电感矩阵l定子电感矩阵l转子电感矩阵第13页/共66页电感矩阵l定、转子互感矩阵l变参数、非线性、时变 第14页/共66页电压方程l三相绕组电压平衡方程 第15页/共66页电压方程l将电压方程写成矩阵形式 第16页/共66页电压方程l把磁链方程代入电压方程,展开 第17页/共66页电压方程l电流
5、变化引起的脉变电动势,或称变压器电动势l定、转子相对位置变化产生的与转速成正比的旋转电动势 第18页/共66页转矩方程和运动方程 l转矩方程l运动方程 l转角方程 第19页/共66页6.2.2 异步电动机三相原始模型的性质l非线性强耦合性非线性耦合体现在电压方程、磁链方程与转矩方程。既存在定子和转子间的耦合,也存在三相绕组间的交叉耦合。l非线性变参数旋转电动势和电磁转矩中都包含变量之间的乘积,这是非线性的基本因素。定转子间的相对运动,导致其夹角 不断变化,使得互感矩阵为非线性变参数矩阵。第20页/共66页异步电动机三相原始模型的非独立性l异步电动机三相绕组为Y无中线连接,若为连接,可等效为Y连
6、接。l可以证明:异步电动机三相数学模型中存在一定的约束条件第21页/共66页异步电动机三相原始模型的非独立性l三相变量中只有两相是独立的,因此三相原始数学模型并不是物理对象最简洁的描述。l完全可以而且也有必要用两相模型代替。第22页/共66页6.3 坐标变换l异步电动机三相原始动态模型相当复杂,简化的基本方法就是坐标变换。l异步电动机数学模型之所以复杂,关键是因为有一个复杂的电感矩阵和转矩方程,它们体现了异步电动机的电磁耦合和能量转换的复杂关系。l要简化数学模型,须从电磁耦合关系入手。第23页/共66页6.3.1 坐标变换的基本思路l两极直流电动机的物理模型,F为励磁绕组,A为电枢绕组,C为补
7、偿绕组。F和C都在定子上,A在转子上。图6-2 二极直流电动机的物理模型F励磁绕组 A电枢绕组 C补偿绕组第24页/共66页6.3.1 坐标变换的基本思路l把F的轴线称作直轴或d轴,主磁通的方向就是沿着d轴的;A和C的轴线则称为交轴或q轴。l虽然电枢本身是旋转的,但由于换向器和电刷的作用,闭合的电枢绕组分成两条支路。电刷两侧每条支路中导线的电流方向总是相同的。第25页/共66页6.3.1 坐标变换的基本思路l当电刷位于磁极的中性线上时,电枢磁动势的轴线始终被电刷限定在q轴位置上,其效果好象一个在q轴上静止的绕组一样。l但它实际上是旋转的,会切割d轴的磁通而产生旋转电动势,这又和真正静止的绕组不
8、同。l把这种等效的静止绕组称作“伪静止绕组”。第26页/共66页6.3.1 坐标变换的基本思路l电枢磁动势的作用可以用补偿绕组磁动势抵消,或者由于其作用方向与d轴垂直而对主磁通影响甚微。l所以直流电动机的主磁通基本上由励磁绕组的励磁电流决定,这是直流电动机的数学模型及其控制系统比较简单的根本原因。第27页/共66页6.3.1 坐标变换的基本思路l如果能将交流电动机的物理模型等效地变换成类似直流电动机的模式,分析和控制就可以大大简化。l坐标变换正是按照这条思路进行的。l不同坐标系中电动机模型等效的原则是:在不同坐标下绕组所产生的合成磁动势相等。第28页/共66页6.3.1 坐标变换的基本思路l在
9、交流电动机三相对称的静止绕组A、B、C中,通以三相平衡的正弦电流,所产生的合成磁动势是旋转磁动势F,它在空间呈正弦分布,以同步转速(即电流的角频率)顺着A-B-C的相序旋转。l任意对称的多相绕组,通入平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。第29页/共66页6.3.1 坐标变换的基本思路l三相变量中只有两相为独立变量,完全可以也应该消去一相。l所以,三相绕组可以用相互独立的两相正交对称绕组等效代替,等效的原则是产生的磁动势相等。第30页/共66页6.3.1 坐标变换的基本思路l所谓独立是指两相绕组间无约束条件l所谓对称是指两相绕组的匝数和阻值相等 l所谓正交是指两相绕组在空间互
10、差 第31页/共66页6.3.1 坐标变换的基本思路图6-3 三相坐标系和两相坐标系物理模型 第32页/共66页6.3.1 坐标变换的基本思路l两相绕组,通以两相平衡交流电流,也能产生旋转磁动势。l当三相绕组和两相绕组产生的旋转磁动势大小和转速都相等时,即认为两相绕组与三相绕组等效,这就是3/2变换。第33页/共66页6.3.1 坐标变换的基本思路l两个匝数相等相互正交的绕组d、q,分别通以直流电流,产生合成磁动势F,其位置相对于绕组来说是固定的。l如果人为地让包含两个绕组在内的铁心以同步转速旋转,磁动势F自然也随之旋转起来,成为旋转磁动势。l如果旋转磁动势的大小和转速与固定的交流绕组产生的旋
11、转磁动势相等,那么这套旋转的直流绕组也就和前面两套固定的交流绕组都等效了。第34页/共66页6.3.1 坐标变换的基本思路l当观察者也站到铁心上和绕组一起旋转时,在他看来,d和q是两个通入直流而相互垂直的静止绕组。l如果控制磁通的空间位置在d轴上,就和直流电动机物理模型没有本质上的区别了。l绕组d相当于励磁绕组,q相当于伪静止的电枢绕组。第35页/共66页6.3.1 坐标变换的基本思路图6-4 静止两相正交坐标系和旋转正交坐标系的物理模型第36页/共66页6.3.2 三相-两相变换(3/2变换)l三相绕组A、B、C和两相绕组之间的变换,称作三相坐标系和两相正交坐标系间的变换,简称3/2变换。l
12、ABC和两个坐标系中的磁动势矢量,将两个坐标系原点重合,并使A轴和轴重合。第37页/共66页三相-两相变换(3/2变换)l按照磁动势相等的等效原则,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在轴上的投影应相等。第38页/共66页三相-两相变换(3/2变换)图6-5 三相坐标系和两相正交坐标系中的磁动势矢量第39页/共66页三相-两相变换(3/2变换)l写成矩阵形式 l按照变换前后总功率不变,匝数比为 第40页/共66页三相-两相变换(3/2变换)l三相坐标系变换到两相正交坐标系的变换矩阵 第41页/共66页三相-两相变换(3/2变换)l两相正交坐标系变换到三相坐标系(简称2/3变换)
13、的变换矩阵 第42页/共66页三相-两相变换(3/2变换)l考虑到 l也可以写作 l电压变换阵和磁链变换阵与电流变换阵相同 第43页/共66页6.3.3 静止两相-旋转正交变换(2s/2r变换)l从静止两相正交坐标系到旋转正交坐标系dq的变换,称作静止两相-旋转正交变换,简称2s/2r变换,其中s表示静止,r表示旋转,变换的原则同样是产生的磁动势相等。第44页/共66页静止两相-旋转正交变换(2s/2r变换)图6-6 静止两相正交坐标系和旋转正交坐标系中的磁动势矢量第45页/共66页静止两相-旋转正交变换(2s/2r变换)l旋转正交变换l静止两相正交坐标系到旋转正交坐标系的变换阵 第46页/共
14、66页静止两相-旋转正交变换(2s/2r变换)l旋转正交坐标系到静止两相正交坐标系的变换阵 l电压和磁链的旋转变换阵与电流旋转变换阵相同 第47页/共66页6.4 异步电动机在正交坐标系上的动态数学模型l首先推导静止两相正交坐标系中的数学模型,然后推广到旋转正交坐标系。l由于运动方程不随坐标变换而变化,故仅讨论电压方程、磁链方程和转矩方程。l在以下论述中,下标s表示定子,下标r表示转子。第48页/共66页6.4.1 静止两相正交坐标系中的动态数学模型l异步电动机定子绕组是静止的,只要进行3/2变换就行了。l转子绕组是旋转的,必须通过3/2变换和旋转到静止的变换,才能变换到静止两相正交坐标系。第
15、49页/共66页定子绕组和转子绕组的3/2变换 l对静止的定子三相绕组和旋转的转子三相绕组进行相同的3/2变换,变换后的定子两相正交坐标系静止,而转子两相正交坐标系以角速度逆时针旋转。第50页/共66页定子绕组和转子绕组的3/2变换 图6-7 定子、转子坐标系到静止两相正交坐标系的变换第51页/共66页定子绕组和转子绕组的3/2变换 l电压方程第52页/共66页定子绕组和转子绕组的3/2变换 l磁链方程l转矩方程第53页/共66页定子绕组和转子绕组的3/2变换 l3/2变换将按三相绕组等效为互相垂直的两相绕组,消除了定子三相绕组、转子三相绕组间的相互耦合。l定子绕组与转子绕组间仍存在相对运动,
16、因而定、转子绕组互感阵仍是非线性的变参数阵。输出转矩仍是定、转子电流及其定、转子夹角的函数。第54页/共66页定子绕组和转子绕组的3/2变换 l与三相原始模型相比,3/2变换减少了状态变量的维数,简化了定子和转子的自感矩阵。第55页/共66页静止两相正交坐标系中的方程 l对转子坐标系作旋转正交坐标系到静止两相正交坐标系的变换,使其与定子坐标系重合,且保持静止。l用静止的两相转子正交绕组等效代替原先转动的两相绕组。第56页/共66页静止两相正交坐标系中的方程l电压方程第57页/共66页静止两相正交坐标系中的方程l磁链方程l转矩方程第58页/共66页静止两相正交坐标系中的方程l旋转变换改变了定、转
17、子绕组间的耦合关系,将相对运动的定、转子绕组用相对静止的等效绕组来代替,消除了定、转子绕组间夹角对磁链和转矩的影响。第59页/共66页静止两相正交坐标系中的方程l旋转变换的优点在于将非线性变参数的磁链方程转化为线性定常的方程,但却加剧了电压方程中的非线性耦合程度,将矛盾从磁链方程转移到电压方程中来了,并没有改变对象的非线性耦合性质。第60页/共66页根据式(3.1.5)至(3.1.8)所列的电压、磁链、转矩和转速方程,就可得到异步电机在两相静止坐标系中的仿真模型第61页/共66页通过3/2变换,将三相静止坐标系中的电压、转换成两相静止坐标系上的电压、(图3.3)。图中,第62页/共66页根据两相旋转/静止变换,将两相静止坐标系中的定子电流 转换成三相静止坐标系上的定子电流图中,=,=。第63页/共66页综合图,就能得到异步电机的仿真模型 第64页/共66页所用电机参数:R1=12;%定子电阻R2=10.7%转子电阻L1=0.8097L2=0.8090Lm1=0.7104np=2第65页/共66页谢谢您的观看!第66页/共66页
限制150内