正态分布大数定律与中心极限定理.pptx
《正态分布大数定律与中心极限定理.pptx》由会员分享,可在线阅读,更多相关《正态分布大数定律与中心极限定理.pptx(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、记作记作 其中其中 及及 0 0都为常数,这种分布叫做都为常数,这种分布叫做正态分布正态分布或或高斯分布高斯分布。设连续型随机变量设连续型随机变量 X X 的概率密度为的概率密度为 1.正态变量的密度函数正态变量的密度函数 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第1页/共45页特别地,当特别地,当 时,正态分布时,正态分布 叫做叫做标准正态分布标准正态分布。其概率密度为其概率密度为 2.2.正态分布 的密度曲线 若固定若固定=0 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第2页/共45页0.53.3.正态变量的分布函数
2、正态变量的分布函数4.4.标准正态分布的密度函数与分布函数标准正态分布的密度函数与分布函数 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第3页/共45页4.4.正态密度函数的性质正态密度函数的性质 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第4页/共45页(3 3)第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第5页/共45页 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第6页/共45页 若若 ,求求X 落在区间落在区间 内的概率,内的概率,其中其中例题例题4
3、.1.2例题例题4.1.1,解:查表可得:解:查表可得:故 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第7页/共45页解解查表得查表得 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第8页/共45页拐点拐点 拐点拐点 随机变量随机变量 X 落在落在 之外的概率小于之外的概率小于3。通常认为这一概率很小,根据小概率事件的实际不可能性通常认为这一概率很小,根据小概率事件的实际不可能性 原理,我们常把区间原理,我们常把区间看作是随机变量看作是随机变量 X 的的 实际可能的取值区间这一原理叫做实际可能的取值区间这一原理叫做三倍标准差原
4、理三倍标准差原理(或(或3 法则法则)。)。第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第9页/共45页 例4.1.3 把温度调节器放入储存着某种液体的容器中,调节器的设定温度 为d 度,已知液体的温度T是随机变量,且(1)若度的概率;度,求(2)若要求保持液体的温度至少为80度的概率不少于0.99,问d至少为多少度?解(1)由已知,所求的概率为(2)据题意,需求d,使得因为 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第10页/共45页利用0.9901正态分布表,有所以即故设定温度d至少为81.165度.一般地,给定实数存在
5、实数使得为随机变量X上的则称百分位点.百分位点的解释和应用在数理统计部分还要详细说明 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第11页/共45页二、正态分布的数字特征二、正态分布的数字特征1.1.数学期望数学期望 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第12页/共45页1.1.方差方差3.3.中心矩中心矩 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第13页/共45页若若 k 为偶数,为偶数,若若 k 为奇数,奇函数对称积分为奇数,奇函数对称积分则:则:第四章第四章 正态分布、大数定
6、律与中心极限定理正态分布、大数定律与中心极限定理第14页/共45页例题例题4.1.4 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第15页/共45页例题4.1.5(2009,4分)第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第16页/共45页二维随机变量二维随机变量(X X,Y Y)的正态分布概率密度表示如下:的正态分布概率密度表示如下:其中,参数其中,参数 及及 分别是随机变量分别是随机变量 X X 及及 Y Y 的数的数学期望,学期望,及及 分别是它们的标准差,分别是它们的标准差,参数参数参数参数 r r 是它们的相关系数
7、。是它们的相关系数。三、二维正态分布三、二维正态分布1.1.二维正态分布的密度二维正态分布的密度 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第17页/共45页2.2.二维正态分布的边缘密度二维正态分布的边缘密度定理4.2.1 其中 第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第18页/共45页置换积分变量但是,一定注意,反过来,两个一维正态分布未必能确定二维正态分布.第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第19页/共45页3.3.二维正态分布的独立性与相关系数二维正态分布的独立性与相关
8、系数应用相关系数公式能够计算出:第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第20页/共45页另外另外,若设相关系数为零,则若设相关系数为零,则 如果随机变量如果随机变量X与与 Y 独立独立,并且都服从正态分布并且都服从正态分布,则则 在二维正态分布中,独立性与不相关是一致的,这是二维正态分布的一个重要特征.第四章第四章 正态分布、大数定律与中心极限定理正态分布、大数定律与中心极限定理第21页/共45页例例4.2.2 设随机变量设随机变量X 与与Y 独立独立,并且都服从正态分布并且都服从正态分布 N(0,1),求求的的概率密度概率密度.解解 第四章第四章 正态
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正态分布 大数 定律 中心 极限 定理
限制150内