用灰色模型进行数学建模.pptx
《用灰色模型进行数学建模.pptx》由会员分享,可在线阅读,更多相关《用灰色模型进行数学建模.pptx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 在数学建模的过程中,常常遇到一些诸如:人口模型、全国的物资调运、运输、生产销售等问题,其中有许多信息都无法确定,要建立这样的模型很困难。现有的系统分析方法量化分析方法,大都是数理统计方法但这种方法多用于少因素的、线性的情形。对于多因素的、非线性的则难以处理。针对这些不足,邓聚龙教授创立了一种就数找数的方法,即灰色系统生成法。创立灰色系统的学科体系和灰色系统“概念与公理体系”,提出灰生成空间、灰关联空间理论、灰建模理论并创立灰预测理论及方法体系。第1页/共26页一、灰色系统.定义:系统作为一个包含若干相互关联、相互制约的任意种类元素组成的具有某种特定功能的整体。系统内部存在有物质流、信息流、能
2、量流。第2页/共26页(一)灰色系统公理:1.信息不完全、不确定的解是非唯一的;(解的非唯一性原理)2.信息是认识的根据;(认识根据原理)3.灰色系统理论的特点是充分开发利用已占有的“最小信息”;(最小信息原理)4.新信息对认识的作用大于老信息;(新信息优先原理)(二)灰色系统的描述:灰色系统用灰色参数、灰色方程、灰色矩阵、灰色度等综合描述,其中灰数是灰色系统的基本单元。第3页/共26页1.灰色参数(灰数)灰数是那些只知道大概范围而不知其确切值的数(只知道部分数学特征,而不知道具体数值的参数)。例如:“某人的身高约为170cm、体重大致为60kg”,这里的“(约为)170(cm)”、“60”都
3、是灰数,分别记为 、。又如,“那女孩身高在157160cm之间”,则关于身高的灰数 。记为灰数的白化默认数,简称白化数。在灰色系统理论中,把随机变量看成灰数,即是在指定范围内变化的所有白色数的全体。如代购一件价格为100元左右的衣服,100可作为预购衣服价格的白化值。灰数有离散灰数(属于离散集)和连续灰数(属于某一区间)。第4页/共26页2.灰色代数方程含有灰色系数的代数方程如:灰色微分方程为含有灰色导数或灰色微分的方程,如 3.灰色矩阵行列数确知而含有灰元的矩阵 若在A的m*n个元素中,有N个灰色元素,则可以用d表示这一矩阵的灰色度第5页/共26页二、灰色生成数列 灰色系统理论认为,尽管客观
4、表象复杂,但总是有整体功能的,因此必然蕴含某种内在规律。关键在于如何选择适当的方式去挖掘和利用它。灰色系统是通过对原始数据的整理来寻求其变化规律的,这是一种就数据寻求数据的现实规律的途径,即为灰色序列的生成。一切灰色序列都能通过某种生成弱化其随机性,显现其规律性。数据生成的常用方式有累加生成、累减生成和加权累加生成。第6页/共26页(1)累加生成 把数列各项(时刻)数据依次累加的过程称为累加生成过程(AGO)。由累加生成过程所得的数列称为累加生成数列。设原始数列为 ,令称所得到的新数列为数列 的1次累加生成数列。类似地有称为 的r次累加生成数列。第7页/共26页(2)累减生成 对于原始数据列依
5、次做前后相邻的两个数据相减的运算过程称为累减生成过程IAGO。如果原始数据列为令 称所得到的数列 为 的1次累减生成数列。注:从这里的记号也可以看到,从原始数列 ,得到新数列 ,再通过累减生成可以还原出原始数列。实际运用中在数列 的基础上预测出 ,通过累减生成得到预测数列 。第8页/共26页(3)加权邻值生成设原始数列为称 为数列 的邻值。为后邻值,为前邻值,对于常数 ,令 由此得到的数列 称为数列 在权 下的邻值生成数,权 也称为生成系数。特别地,当生成系数 时,则称为均值生成数,也称等权邻值生成数。第9页/共26页灰色系统理论的主要方法关联度分析法最基本的方法(一个由众多因素构成的系统中哪
6、些因素对系统的影响大/中/小?)基于白化权函数的灰色统计和灰色聚类法。灰色预测法(如GM(1,1)。灰色决策。灰色优化技术(如灰色规划等)。第10页/共26页三、灰色预测模型GM(m,n)灰色系统理论是基于关联空间、光滑离散函数等概念定义灰导数与灰微分方程,进而利用离散数据列建立微分方程形式的动态模型,称为灰色模型(GM)。灰色预测是应用灰色模型GM对灰色系统进行分析、建模、求解、预测的过程。由于灰色建模理论应用数据生成手段,弱化了系统的随机性,使紊乱的原始序列呈现某种规律,规律不明显的变得较为明显,建模后还能进行残差辨识,即使较少的历史数据,任意随机分布,也能得到较高的预测精度。因此,灰色预
7、测在社会经济、管理决策、农业规划、气象生态等各个部门和行业都得到了广泛的应用 第11页/共26页(一)GM(1,1)模型设 为原始数列,其1次累加生成数列为 ,其中定义 的灰导数为令 为数列 的邻值生成数列,即于是定义GM(1,1)的灰微分方程模型为第12页/共26页即或 (1)在式(1)中,称为灰导数,a称为发展系数,称为白化背景值,b称为灰作用量。将时刻表 代入(1)式有引入矩阵向量记号:数据向量 参数向量 数据矩阵第13页/共26页于是GM(1,1)模型可表示为现在问题归结为求a,b在值。用一元线性回归,即最小二乘法求它们的估计值为注:实际上回归分析中求估计值是用软件计算的,有标准程序求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 灰色 模型 进行 数学 建模
限制150内