知识图谱梳理.pptx
《知识图谱梳理.pptx》由会员分享,可在线阅读,更多相关《知识图谱梳理.pptx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、知识图谱架构知识图谱一般架构:来源自百度百科复旦大学知识图谱架构:早期知识图谱架构第1页/共28页知识图谱一般架构:来源自百度百科第2页/共28页第3页/共28页架构讨论数据检索预处理构建关系矩阵网络图谱参数调整可视化数据规范化处理结果导读早期知识图谱架构第4页/共28页知识抽取实体概念抽取实体概念映射关系抽取质量评估第5页/共28页KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs,New York,August 24,2014A sampler of research problemsGrowth:
2、knowledge graphs are incomplete!Link prediction:add relationsOntology matching:connect graphsKnowledge extraction:extract new entities and relations from web/textValidation:knowledge graphs are not always correct!Entity resolution:merge duplicate entities,split wrongly merged onesError detection:rem
3、ove false assertionsInterface:how to make it easier to access knowledge?Semantic parsing:interpret the meaning of queriesQuestion answering:compute answers using the knowledge graphIntelligence:can AI emerge from knowledge graphs?Automatic reasoning and planningGeneralization and abstraction9第6页/共28
4、页关系抽取定义:常见手段:语义模式匹配频繁模式抽取,基于密度聚类,基于语义相似性层次主题模型弱监督第7页/共28页KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs,New York,August 24,2014Methods and techniquesSupervised modelsSemi-supervised modelsDistant supervision2.Entity resolutionSingle entity methodsRelational methods3.Link pre
5、dictionRule-based methodsProbabilistic modelsFactorization methodsEmbedding models80Not in this tutorial:Entity classification Group/expert detection Ontology alignment Object ranking1.Relation extraction:第8页/共28页KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs,New York,August
6、 24,2014 Extracting semantic relations between sets of grounded entitiesNumerous variants:Undefined vs pre-determined set of relationsBinary vs n-ary relations,facet discoveryExtracting temporal informationSupervision:fully,un,semi,distant-supervisionCues used:only lexical vs full linguistic feature
7、s82Relation ExtractionKobeBryantLA LakersplayForthe franchise player ofonce again savedman of the match forthe Lakers”his team”Los Angeles”“Kobe Bryant,“Kobe“Kobe Bryant?第9页/共28页KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs,New York,August 24,2014Supervised relation extract
8、ionSentence-level labels of relation mentionsApple CEO Steve Jobs said.=(SteveJobs,CEO,Apple)Steve Jobs said that Apple will.=NILTraditional relation extraction datasetsACE 2004MUC-7Biomedical datasets(e.g BioNLP clallenges)Learn classifiers from+/-examplesTypical features:context words+POS,dependen
9、cy path betweenentities,named entity tags,token/parse-path/entity distance83第10页/共28页KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs,New York,August 24,2014Semi-supervised relation extractionGeneric algorithm(遗传算法)1.2.3.4.5.Start with seed triples/golden seed patternsExtract
10、patterns that match seed triples/patternsTake the top-k extracted patterns/triplesAdd to seed patterns/triplesGo to 2Many published approaches in this category:Dual Iterative Pattern Relation Extractor Brin,98Snowball Agichtein&Gravano,00TextRunner Banko et al.,07 almost unsupervisedDiffer in patter
11、n definition and selection86第11页/共28页founderOfKDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs,New York,August 24,2014Distantly-supervised relation extraction88Existing knowledge base+unlabeled text generate examplesLocate pairs of related entities in textHypothesizes that the
12、 relation is expressedGoogle CEO Larry Page announced that.Steve Jobs has been Apple for a while.Pixar lost its co-founder Steve Jobs.I went to Paris,France for the summer.GoogleCEOcapitalOfLarryPageFranceAppleCEOPixarSteveJobs第12页/共28页Distant supervision:modeling hypothesesTypical architecture:1.Co
13、llect many pairs of entities co-occurring in sentences from text corpus2.If 2 entities participate in a relation,several hypotheses:1.All sentences mentioning them express it Mintz et al.,09“Barack Obama is the 44th and current President of the US.”(BO,employedBy,USA)89KDD 2014 Tutorial on Construct
14、ing and Mining Web-scale Knowledge Graphs,New York,August 24,2014第13页/共28页KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs,New York,August 24,2014Sentence-level featuresLexical:words in between and around mentions and their parts-of-speech tags(conjunctive form)Syntactic:depen
15、dency parse path between mentions along withside nodesNamed Entity Tags:for the mentionsConjunctions of the above featuresDistant supervision is used on to lots of data sparsity of conjunctiveforms not an issue92第14页/共28页Distant supervision:modeling hypothesesTypical architecture:1.Collect many pair
16、s of entities co-occurring in sentences from text corpus2.If 2 entities participate in a relation,several hypotheses:1.2.All sentences mentioning them express it Mintz et al.,09At least one sentence mentioning them express it Riedel et al.,10“Barack Obama is the 44th and current President of the US.
17、”(BO,employedBy,USA)“Obama flew back to the US on Wednesday.”(BO,employedBy,USA)95KDD 2014 Tutorial on Constructing and Mining Web-scale Knowledge Graphs,New York,August 24,2014第15页/共28页Distant supervision:modeling hypothesesTypical architecture:1.Collect many pairs of entities co-occurring in sente
18、nces from text corpus2.If 2 entities participate in a relation,several hypotheses:1.2.3.All sentences mentioning them express it Mintz et al.,09At least one sentence mentioning them express it Riedel et al.,10At least one sentence mentioning them express it and 2 entities can expressmultiple relatio
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 知识 图谱 梳理
限制150内