常用卫生统计学方法.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《常用卫生统计学方法.pptx》由会员分享,可在线阅读,更多相关《常用卫生统计学方法.pptx(87页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、CONTENTS1.基本概念2.基本步骤2023/3/24第1页/共87页变量值变量值观察值观察值定性定量一、卫生统计学的基本概念变量:对每个观察单位的某项特征进行测定和观察,这种观察单位的特征称为变量。2023/3/24第2页/共87页01计量资料用度量衡的方法测量每个观察单位的某项研究指标量的大小,所得的数据称为数值变量。02计数资料将全体观察单位按某种性质或类别进行分组,然后清点各组中的例数,这样得到的数据称为计数资料,亦称为分类变量。03等级资料将全体观察单位按某种性质的不同程度分为若干组,分别清点各组中的例数,这种数据资料称为等级资料。统计资料一、卫生统计学的基本概念描述计量资料常用
2、统计方法:平均数、标准差等;统计分析方法:u u检验、t t检验、方差分析等。计数资料常用统计指标:率、构成比等;统计分析方法:u u检验、2检验等。计数资料常用统计指标:率、构成比等;统计分析方法:秩和检验、2检验等。2023/3/24第3页/共87页是从总体中随机抽取有代表性的一部分观察单位,用样本信息去推断总体特征。样本根据研究目的确定的同质的观察单位的某个变量值的全体。总体一、卫生统计学的基本概念2023/3/24第4页/共87页特点:不可避免,但可控制在一定范围。即使消除了系统误差,控制了随机测量误差,样本统计量和总体参数之间仍存在差别,这种由随机抽样引起的样本指标与总体指标的差异由
3、于某种必然因素所致,具有一定的方向性。偶然机遇所致,无方向性,对同一样品多次测定,结果有高有低。抽样误差系统误差误差2023/3/24一、卫生统计学的基本概念特点:不是偶然造成,观察结果一贯性的偏高或偏低。避免方法:1 1)通过周密的研究设计2 2)调查或测量过程中的质量控制随机测量误差特点:由于个体变异造成,抽样机遇所致。客观存在,不可避免。但可估计大小,也可增加样本含量使其减小。第5页/共87页是指一次试验结果计算得到的样本率。频率(样本)描述随机事件发生的可能性大小的数值。事件A A的概率记为P(A),P(A),随机事件的概率P P取值在0 01 1之间。概率(总体)一、卫生统计学的基本
4、概念第6页/共87页02计量资料的统计描述2023/3/24第7页/共87页(一)集中趋势(一)集中趋势(Central tendency)(Central tendency)的描述的描述 均数均数常用平均数常用平均数 几何均数几何均数 中位数中位数 平均数平均数(average)常用于描述一组变量常用于描述一组变量值的集中趋势,是反映同质资料的平均水值的集中趋势,是反映同质资料的平均水平或集中位置的特征值。平或集中位置的特征值。2023/3/24第8页/共87页 常用平均数常用平均数 1.均数(算术均数)(mean)表示符号总体均数 ()样本均数 (x)应应 用用对称分布资料,尤其是正态分布
5、资料对称分布资料,尤其是正态分布资料计算方法计算方法 x1+x2+xn x直接法直接法 x=n nf 1x1+f 2x2+f kxk fx加权法加权法 x=f 1+f 2+f k n2023/3/24第9页/共87页 常用平均数常用平均数 2.几何均数(geometric mean)表示符号(G)应应 用用 对数正态分布资料,变量值呈倍数关系对数正态分布资料,变量值呈倍数关系计算方法计算方法直接法直接法 G=n x1 x2 xn lgx1+lgx2+lgxn lgx G=lg1 =lg1 n n f1lgx1+f2lgx2+fklgxk f lgx加权法加权法G=lg1 =lg1 n n202
6、3/3/24第10页/共87页 常用平均数常用平均数 3.中位数(median)表示符号(M)偏态分布资料偏态分布资料应应 用用变量值分布一端或两端无确定数值变量值分布一端或两端无确定数值分布不明资料分布不明资料计算方法计算方法 直接用变量值计算直接用变量值计算M=X n+1 (n为奇数时为奇数时)2 1 或或M=X n +X n (n为偶数时为偶数时)2 2 2+12023/3/24第11页/共87页 (二)离散趋势(二)离散趋势 (tendency of dispersion)(tendency of dispersion)描述变量值的离散趋势用变异指标 全距全距 常用变异指标常用变异指标
7、 四分位数间距四分位数间距方差和标准差方差和标准差 变异系数变异系数2023/3/24第12页/共87页 常用变异指标常用变异指标 1.全距(range,简记为R)R=最大值最大值 最小值最小值反映变量值的变异范围反映变量值的变异范围各种类型资料都可应用,但只作各种类型资料都可应用,但只作 参考资料参考资料2023/3/24第13页/共87页 常用变异指标常用变异指标 2.方差 和 标准差(standard deviation)定义公式 (X)2 (X)2 2 =N N (X X)2 (X X)2 S2 =S=n 1 n 1 2023/3/24第14页/共87页应用公式应用公式 X2 (X)2
8、/n直接法直接法S=n 1 f X2 (f X)2/n加权法加权法S=n 12023/3/24第15页/共87页 标准差用途:标准差用途:1.表示同质变量值的离散程度;表示同质变量值的离散程度;2.在多组资料均数相近、度量单位相同的条件下在多组资料均数相近、度量单位相同的条件下表示观察值的变异度大小;表示观察值的变异度大小;3.与均数结合描述正态分布的特征和估计医学参与均数结合描述正态分布的特征和估计医学参考值范围;考值范围;4.与样本含量与样本含量(n)结合,计算标准误结合,计算标准误2023/3/24第16页/共87页用途:用途:1)比较多组比较多组单位不同单位不同资料的变异度资料的变异度
9、2)比较多组)比较多组均数相差较大均数相差较大资料的变度资料的变度常用变异指标常用变异指标3.变异系数(coefficient of variation,简记为CV)定义 CV=s/X100%2023/3/24第17页/共87页 (三)正态分布和参考值范围的估计 正态分布的概念和特征 正态分布是以均数为中心呈对称的钟型分布 频数(人数)125 129 133 137 141 145 149 153 157 161身高(cm)f 120名12岁健康男孩身高的频数分布Normal distribution curve2023/3/24第18页/共87页 正态分布的特征有:正态分布的特征有:1)正态
10、分布曲线在均数处最高正态分布曲线在均数处最高2)正态分布以均数为中心,左右对称且逐渐减少正态分布以均数为中心,左右对称且逐渐减少3)正态分布曲线的两个参数正态分布曲线的两个参数和和,记作记作N(,2)4)正态曲线在正态曲线在1处各有一个拐点处各有一个拐点2023/3/24第19页/共87页 正态曲线下的面积分布规律正态曲线下的面积分布规律 1 占正态曲线下面积的占正态曲线下面积的 68.27%1.96 占正态曲线下面积的占正态曲线下面积的 95.00%2.58 占正态曲线下面积的占正态曲线下面积的 99.00%若若n100,则,则可用可用 X 代替,代替,用用 s 代替。代替。-2.58 -1
11、.96 -1 +1 +1.96 +2.582.5%0.5%2023/3/24第20页/共87页 正态分布的应用1.估计变量值的频数分布2.制定医学临床参考值第21页/共87页常常 用用 U 值值 表表-正常值范围正常值范围 双侧双侧 单侧单侧-90%1.645 1.282 95%1.960 1.645 99%2.576 2.326-95%双侧参考值双侧参考值:1.96S99%双侧参考值双侧参考值:2.58S 95%单侧参考值单侧参考值:-1.64S,P5 或 0.05 (来自同一总体)(来自同一总体)?假设检验回答假设检验回答 环境条件影响环境条件影响 P 0 或或 0(单侧检验)(单侧检验)
12、(检验水准检验水准):通常取:通常取 =0.052023/3/24第34页/共87页2)选定检验方法,计算检验统计量选定检验方法,计算检验统计量 根据资料类型及统计推断的目的选用合适根据资料类型及统计推断的目的选用合适的检验方法计算出统计量的检验方法计算出统计量(t值、值、u值、值、2值等值等)。3)确定确定P值值,作出推断结论作出推断结论 根据自由度,查不同统计量的界值表根据自由度,查不同统计量的界值表(t值值表、表、2值表等值表等),确定现有统计量的概率,确定现有统计量的概率P值值 2023/3/24第35页/共87页 确定确定P值值:当:当:t 0.05 (差异无统计学意义差异无统计学意
13、义)t 0.01()t t 0.05()0.01 按所取检验水准不拒绝按所取检验水准不拒绝H0 P 按所取检验水准拒绝按所取检验水准拒绝H02023/3/24第36页/共87页 (三)假设检验时应注意的问题 保证比较的样本间有较好的均衡性和可比性;选用的假设检验方法应符合其应用条件;正确理解差别有无显著性的统计意义;结论不能绝对化;报告结论时应列出统计量值,注明单侧或双 侧检验,写出P P值的确切范围。2023/3/24第37页/共87页 四、四、t-t-检验和检验和 u-u-检验检验 t-检验(t-test or Students test)(一)样本均数与总体均数比较的t 检验 目的:推断
14、样本所代表的未知总体均数与 已知的总体均数0有无差别(0 一般 为理论值、标准值或经过大量观察所 得的稳定值等)条件:理论上要求资料来自正态分布总体 -0 公式:t=n 1 S2023/3/24第38页/共87页例1 1、根据大量调查,已知健康成年男子脉搏数为7272次/分。某医生在山区随机抽查2525名健康成年男子,求得其脉搏均数为74.274.2次/分,标准差为6.56.5次/分。能否据此认为山区成年男子的脉搏数高于一般?2023/3/24第39页/共87页1 1、H0:=0,H1:0,=0.052、-0 74.2-7274.2-72 t=1.6921.692 S 6.5/6.5/3、自由
15、度 =n1=25-1=241=25-1=24,查t t值表(单侧)得t t0.050.05(2424)=1.711=1.711。t=1.6921.711t=1.6920.05P0.054 4、在=0.05=0.05水准上,接受H0,不能认为该山区成年男子的脉搏数高于一般。2023/3/24第40页/共87页(二)配对设计(二)配对设计差值均数与总体均数差值均数与总体均数0 0比较比较t 检验检验 同源配对同源配对配对方法配对方法 异源配对异源配对目的:推断两种处理的效果有无差别或推断某种处目的:推断两种处理的效果有无差别或推断某种处 理有无作用理有无作用条件:样本来自正态总体条件:样本来自正态
16、总体公式:公式:d 0 d t=n-1 S d S d/n2023/3/24n为对子数第41页/共87页(三)完全随机设计的两样本均数的比较(三)完全随机设计的两样本均数的比较目的:推断两样本均数分别代表的总体均数目的:推断两样本均数分别代表的总体均数1 与与2有无差别。有无差别。1)两样本含量较小时,且要求两样本总体方差相等两样本含量较小时,且要求两样本总体方差相等公式:公式:1-2 t=(n1-1)+(n2-1)S1-2 1 1 S 1-2 =Sc2(+)n1 n22023/3/24第42页/共87页 (n1-1)s12+(n2-1)s22 Sc2=n1+n2-2 x1-x2 t=(n1-
17、1)s12+(n2-1)s22 1 1 (+)n1+n2-2 n1 n22023/3/24第43页/共87页 2)两样本含量足够大,如两样本含量足够大,如n50或或100时时 U-检验检验应用条件:应用条件:当当 n 较大较大(n 50)或或 n 虽小,但总虽小,但总 体标准差已知,可用体标准差已知,可用 U 检验检验公式公式:1-2 1-2 U=S1-2 S12 S22 +n1 n2 2023/3/24第44页/共87页04分类资料的统计描述2023/3/24第45页/共87页一、常用相对数相对数:相对数:计数资料常用的统计指标,又称相对指标(Relation number)率率 常用相对数
18、常用相对数 构成比构成比 相对比相对比 2023/3/24第46页/共87页 常用相对数 (一)(一)率率 (Rate)Rate)*频率指标,表示某现象发生的频率和强度*计算公式:实际发生某现象的观察数 率=K 可能发生某现象的观察单位总数 (K为比例基数,可为100%或1000等)2023/3/24第47页/共87页 (二)(二)构成比(构成比(Constituent ratioConstituent ratio)*又称构成指标,表示某一事物内部各又称构成指标,表示某一事物内部各 组成部分所占的比重或分布。组成部分所占的比重或分布。*计算公式:计算公式:某一事物各组成部分的个体数某一事物各组
19、成部分的个体数 构成比构成比=100%同一事物各组成部分的个体总数同一事物各组成部分的个体总数2023/3/24第48页/共87页 (三)相对比(三)相对比 (Relative ratioRelative ratio)*表示两个有联系的指标(绝对数,相对数表示两个有联系的指标(绝对数,相对数 或平均数)之比,说明对比水平。或平均数)之比,说明对比水平。*计算公式:计算公式:A 指标指标 相对比相对比=(或(或 100%100%)B 指标指标 1 1)对比指标:两个有关同类指标之比,如两地)对比指标:两个有关同类指标之比,如两地 肿瘤死亡比肿瘤死亡比 2 2)关系指标:两个有关非同类指标之比,如
20、每)关系指标:两个有关非同类指标之比,如每 千人病床数千人病床数2023/3/24第49页/共87页二、应用相对数应注意的问题:1.不要把构成比当作率分析(最容易混淆)-年龄组(岁)人口数 癌肿病人数 构成比(%)患病率(%)-30 633000 19 1.3 3.0 30-570000 171 11.4 30.0 40-374000 486 32.6 129.9 50-143000 574 38.5 401.4 60-30250 242 16.2 800.0-合 计 1750250 1492 100.0 85.2-2023/3/24第50页/共87页 二、应用相对数应注意的问题:2.计算相对
21、数的分母不宜太小-治疗数 有效数 总体率95%可信区间-2 1 1 99%4 2 7 93%50 25 36 65%500 250 45 54%5000 2500 49 51%-可见,当n足够大时,相对数才稳定。2023/3/24第51页/共87页 二、应用相对数应注意的问题:3.率或构成比的比较应注意可比性 1)研究对象是否同质(方法、时间、种族、地区、环境等)2)其它影响因素(年龄、性别)在各组的内部构成是否相同 3)同地区不同时期资料对比时,应注意客观条件是否一致 4.对观察单位数不等的几个率不能直接相加 求其平均率 5.对样本率(或构成比)的比较应作假设检验2023/3/24第52页/
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 常用 卫生 统计学 方法
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内