电磁波的辐射案例.pptx
《电磁波的辐射案例.pptx》由会员分享,可在线阅读,更多相关《电磁波的辐射案例.pptx(104页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第45.4645.46学时学时7.1 滞滞 后后 位位 时谐场中,电荷源和电流源J之间以电流连续性方程 返回第1页/共104页 将与J联系起来,而标量位和矢量位A之间也存在一定的关系。这一关系就是洛仑兹条件,即式(5-77):电磁场与标量位和矢量位A之间的关系式为 第2页/共104页亥姆霍兹积分及辐射条件亥姆霍兹积分及辐射条件 求式(5-79)中的标量位,并且导出辐射条件。格林定理中的u和w是任意标量函数,且要求u和w以及它们的一阶和二阶导数在V内连续。容易验证标量函数 第3页/共104页满足齐次亥姆霍兹方程 令格林定理中的u代表标量位,即u=,满足式(5-79),即 再令w=,且R=|r-
2、r|,如图7-1所示。r是场点;r是源点,亦即格林定理中的积分变点。(7-6)第4页/共104页图 7-1 求解式(7-6)用图 第5页/共104页于是积分在体积V1=V-V2及其表面S1=S+S2上进行:在 S2上 积 分 时,外 法 线 方 向 指 向 小 球 球 心 P点 于 是 ;面元dS=a2d,d是dS对P点所张的立体角元。这样,第6页/共104页令a0,小球面S2收缩成点P。考虑到 有限,上式中的积分只剩下被积函数是(r)e-jkR/R2的一项不等于零。此时小球面S2上的(r)可以用小球球心处的(r)代替:第7页/共104页矢量位A的每个直角坐标分量均可用形如上式的积分表示,于是
3、 考虑无限空间的电磁问题时,取以R为半径的球面作为S,dS=R2d,式(7-8)中的面积分可以写成(7-8)(7-10)第8页/共104页 而要排除在无限远处的场源(设无限远处的场源为零),就必须使上式为零。为此,要求R时,在这个限制条件下,式(7-10)的第二项积分等于零,即要求在远离场源处标量位至少按R-1减少;第一项积分在满足 时也等于零。式(7-11b)称为辐射条件。对于矢量位亦有类似条件。(7-11b)第9页/共104页滞后位滞后位 标量位满足辐射条件式(7-11b)时,排除无限远处的场源,式(7-8)中的面积分一项为零,标量位(r)仅表示向外传播的电磁波,即 如果我们把k=/v代入
4、上式,并重新引入时间因子ejt,则得 第10页/共104页引入时间因子ejt后则有 第11页/共104页7.2 电基本振子的辐射场电基本振子的辐射场 图 7-2 电流元与短对称振子 第12页/共104页电基本振子的电磁场计算电基本振子的电磁场计算 图 7-3 电基本振子 第13页/共104页 取短导线的长度为dl,横截面积为S,因为短导线仅占有一个很小的体积dV=dlS,故有 又由于短导线放置在坐标原点,dl很小,因此可取r=0,从而有R=|r-r|r。第14页/共104页由此可解得 第15页/共104页电基本振子的电磁场分析电基本振子的电磁场分析 1.近区场近区场 当kr1时,r1时,r/2
5、,即场点P与源点距离r远大于波长的区域称为远区。在远区中,远区电磁场表达式简化为 第18页/共104页 场的方向:电场只有E分量;磁场只有H分量。其复坡印廷矢量为 可见,E、H互相垂直,并都与传播方向er相垂直。因此电基本振子的远区场是横电磁波(TEM波)。场的相位:无论E或H,其空间相位因子都是-kr,即其空间相位随离源点的距离r增大而滞后,等相位面是r为常数的球面,所以远区辐射场是球面波。由于等相位面上任意点的E、H振幅不同,所以又是非均匀平面波。E/H=是一常数,等于媒质的波阻抗。第19页/共104页 场的振幅:远区场的振幅与r成反比;与I、dl/成正比。值得注意,场的振幅与电长度dl/
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁波 辐射 案例
限制150内