神经网络控制幻灯片.ppt
《神经网络控制幻灯片.ppt》由会员分享,可在线阅读,更多相关《神经网络控制幻灯片.ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、神经网络控制第1页,共39页,编辑于2022年,星期一6.1 概述概述6.1.1生物神经元模型生物神经元模型 6.1.2 人工神经元模型人工神经元模型6.1.3 人工神经网络模型人工神经网络模型6.1.4 神经网络的学习方法神经网络的学习方法第2页,共39页,编辑于2022年,星期一26.1.2 人工神经元模型n人工神经元是对生物神经元的一种模拟与简化。它是神经网络的基本处理单元。如图所示为一种简化的人工神经元结构。它是一个多输入、单输出的非线性元件。第3页,共39页,编辑于2022年,星期一3第4页,共39页,编辑于2022年,星期一4n其输入、输出关系可描述为n其中,是从其他神经元传来的输
2、入信号;表示从神经元j到神经元i的连接权值;为阈值;称为激发函数或作用函数。第5页,共39页,编辑于2022年,星期一5 输出激发函数 又称为变换函数,它决定神经元(节点)的输出。该输出为1或0,取决于其输入之和大于或小于内部阈值 。函数 一般具有非线性特性。下图表示了几种常见的激发函数。1.阈值型函数(见图(a),(b)2.饱和型函数(见图(c)3.双曲函数(见图(d)4.S型函数(见(e)5.高斯函数(见图(f)第6页,共39页,编辑于2022年,星期一6第7页,共39页,编辑于2022年,星期一76.1.3 人工神经网络模型n人工神经网络是以工程技术手段来模拟人脑神经元网络的结构与特征的
3、系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。就神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。第8页,共39页,编辑于2022年,星期一81.前馈型神经网络n前馈型神经网络,又称前向网络(Feed forward NN)。如图所示,神经元分层排列,有输入层、隐层(亦称中间层,可有若干层)和输出层,每一层的神经元只接受前一层神经元的输入。n从学习的观点来看,前馈网络是一种强有力的学习系统,其结构简单而易于编程;从系统的观点看,前馈网络是一静态非线性映射,通过简单非线性处理单元的复合映射,可
4、获得复杂的非线性处理能力。但从计算的观点看,缺乏丰富的动力学行为。大部分前馈网络都是学习网络,它们的分类能力和模式识别能力一般都强于反馈网络,典型的前馈网络有感知器网络、BP 网络等。第9页,共39页,编辑于2022年,星期一9第10页,共39页,编辑于2022年,星期一106.1.4 神经网络的学习方法n学习方法是体现人工神经网络智能特性的主要标志,离开了学习算法,人工神经网络就失去了自适应、自组织和自学习的能力。目前神经网络的学习方法有多种,按有无导师来分类,可分为有教师学习(Supervised Learning)、无教师学习(Unsupervised Learning)和再励学习(Re
5、inforcement Learning)等几大类。在有教师的学习方式中,网络的输出和期望的输出(即教师信号)进行比较,然后根据两者之间的差异调整网络的权值,最终使差异变小。在无教师的学习方式中,输入模式进人网络后,网络按照一预先设定的规则(如竞争规则)自动调整权值,使网络最终具有模式分类等功能。再励学习是介于上述两者之间的一种学习方式。第11页,共39页,编辑于2022年,星期一11神经网络中常用的几种最基本的学习方法 1.Hebb学习规则 n两个神经元同时处于激发状态时,它们之间的连接强度将得到加强,这一论述的数学描述被称为Hebb学习规则 nHebb学习规则是一种无教师的学习方法,它只根
6、据神经元连接间的激活水平改变权值,因此这种方法又称为相关学习或并联学习。第12页,共39页,编辑于2022年,星期一122Delta()学习规则n规则实现了E中的梯度下降,因此使误差函数达到最小值。但学习规则只适用于线性可分函数,无法用于多层网络。BP网络的学习算法称为BP算法,是在规则基础上发展起来的,可在多网络上有效地学习。第13页,共39页,编辑于2022年,星期一133概率式学习n从统计力学、分子热力学和概率论中关于系统稳态能量的标准出发,进行神经网络学习的方式称概率式学习。神经网络处于某一状态的概率主要取决于在此状态下的能量,能量越低,概率越大。同时,此概率还取决于温度参数T。T越大
7、,不同状态出现概率的差异便越小,较容易跳出能量的局部极小点而到全局的极小点;T越小时,情形正相反。概率式学习的典型代表是Boltzmann机学习规则。它是基于模拟退火的统计优化方法,因此又称模拟退火算法。第14页,共39页,编辑于2022年,星期一144竞争式学习 n竞争式学习属于无教师学习方式。此种学习方式利用不同层间的神经元发生兴奋性联接,以及同一层内距离很近的神经元间发生同样的兴奋性联接,而距离较远的神经元产生抑制性联接。在这种联接机制中引人竟争机制的学习方式称为竟争式学习。它的本质在于神经网络中高层次的神经元对低层次神经元的输入模式进行竞争识别。第15页,共39页,编辑于2022年,星
8、期一156.2 前向神经网络前向神经网络6.2.1 感知器网络n感知器(perceptrvon)是一个具有单层神经元的神经网络,并由线性阈值元件组成,是最简单的前向网络。它主要用于模式分类,单层的感知器网络结构如下图所示。第16页,共39页,编辑于2022年,星期一16第17页,共39页,编辑于2022年,星期一17感知器的一种学习算法:n随机地给定一组连接权 n输入一组样本和期望的输出(亦称之为教师信号)n计算感知器实际输出n修正权值 n选取另外一组样本,重复上述2)4)的过程,直到权值对一切样本均稳定不变为止,学习过程结束。第18页,共39页,编辑于2022年,星期一186.2.2 BP网
9、络n误差反向传播神经网络,简称BP网络(Back Propagation),是一种单向传播的多层前向网络。在模式识别、图像处理、系统辨识、函数拟合、优化计算、最优预测和自适应控制等领域有着较为广泛的应用。如图是BP网络的示意图。第19页,共39页,编辑于2022年,星期一19第20页,共39页,编辑于2022年,星期一20n误差反向传播的BP算法简称BP算法,其基本思想是最小二乘算法。它采用梯度搜索技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。nBP算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层,每层神经元(节点)的状态只
10、影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转人反向传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使误差信号最小。第21页,共39页,编辑于2022年,星期一211BP网络的前馈计算2BP网络权值的调整规则 1).输出层权系数的调整 2).隐含层节点权系数的调整3BP学习算法的计算步骤 第22页,共39页,编辑于2022年,星期一22 3BP学习算法的计算步骤 1).初始化 置所有权值为较小的随机数 2).提供训练集 3).计算实际输出,计算隐含层、输出层各神经元输出 4).计算目标值与实际输出的偏差E 5).计算 6).计算 7).返回“2)”重复计算,直到误
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 神经网络 控制 幻灯片
限制150内