《射频微波天线及ADS仿真课件.pptx》由会员分享,可在线阅读,更多相关《射频微波天线及ADS仿真课件.pptx(133页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、12.1 12.1 天线基础知识天线基本指标天线的基本指标介绍如下:(1)天线增益G定义为 (12-1a)式 中,Pr为 被 测 天 线 距 离 R处 所 接 收 到 的 功 率 密 度,单 位 为W/m2;Pi为全向性天线距离R处所接收到的功率密度,单位为W/m2。第1页/共133页增益为G的天线距离R处的功率密度应为接收功率密度,即(2)天线输入阻抗Zin定义为式中,U为在馈入点上的射频电压;I为在馈入点上的射频电流。(12 1b)(12 2a)第2页/共133页天线是个单口网络,输入驻波比或反射系数是一个基本指标,为了使天线辐射尽可能多的功率,必须使天线与空气匹配,输入驻波比尽可能小。阻
2、抗、驻波比与反射系数的关系为(12 2b)第3页/共133页(3)辐射效率r定义为 (12-3)式中,Pr为天线辐射出的功率,单位为W;Pi为馈入天线的功率,单位为W。(4)辐射方向图:用一极坐标图来表示天线的辐射场强度与辐射功率的分布,如图12-1所示。(5)半功率角的定义如图 12-2 所示。第4页/共133页图 12-1 辐射方向图第5页/共133页 图 12-2 半功率波束宽度(a)按电场定义;(b)按功率定义第6页/共133页(6)旁瓣:在主辐射波瓣旁,还有许多副瓣,沿角度方向展开如图12-3 所示。其中,HPBW为半功率波束宽度,辐射最大功率下降3dB时的角度;FNBW为第一零点波
3、束宽度;SLL为旁瓣高度,辐射最大功率与最大旁瓣的差。第7页/共133页图 12-3 主瓣与旁瓣第8页/共133页(7)方向系数D定义为 (12-4)式中,Pmax为最大功率密度,单位为W/m2;Pav为平均辐射功率密度,单位为W/m2。常见的天线方向系数如下:偶极天线 D=1.5 或 1.76dB 单极天线 D=1.5 或 1.76 dB 抛物面天线 喇叭天线式中,d为抛物面半径,为信号波长,A为喇叭口面面积。第9页/共133页远区场概念通常,天线看作是辐射点源,近区是球面波,远区为平面波,如图12-4 所示。辐射方向图是在远区测量。下面给出远、近场的分界点。第10页/共133页图 12-4
4、 远区场概念第11页/共133页在图12-4 中,有以下几何关系:通常,R0 W0(12-16)(12-17)第44页/共133页式中k0=2/0是自由空间的波数,Z0是宽度W的微带特性阻抗,e是有效介电常数,L是边沿电容引起的边沿延伸。由图12-17 可看出,边沿电场盖住了微带边沿,等效为贴片的电长度增加。(12-18)第45页/共133页图12 17 边沿辐射槽第46页/共133页为了计算天线的辐射阻抗,天线可以等效为槽阻抗和传输线级联。输入导纳为式中Ys为式(12-17)给出的辐射槽导纳,=2e/0微带线内传播常数。谐振时,L+L=g/2=0/2e,式(12-19)仅剩两个电导,即Yin
5、=2G (12-20)(12-19)第47页/共133页 微带天线的工作频率与结构参数的关系为 W不是很关键,通常按照下式确定:(12-21)(12-22)第48页/共133页图 12-18 矩形天线实例第49页/共133页设计实例:设计3 GHz微带天线,基板参数为2.2/0.762,并用四分之一线段实现与50 馈线的匹配。天线拓扑如图12-18 所示。步骤一:确定各项参数:W=3.95cm,e=2.14,L=0.04cm L=3.34cm,Rin=288步骤二:阻抗变换器的特性阻抗为ZT0=120 第50页/共133页 步骤三:由微带原理计算得变换器的长度和宽度为l1=1.9 cm,w1=
6、0.0442cm 微带天线的辐射方向图可以用电磁场理论严格计算。图12-19是典型的方向图,典型HPBW=5060,G=58 dB。第51页/共133页图 12-19 微带天线的典型方向图第52页/共133页在许多场合下要利用合适的馈线点实现微带天线的圆极化。如图12-20 所示,90耦合器激励两个方向的线极化构成圆极化,或者扰动微带天线的辐射场实现圆极化。第53页/共133页图 12-20 圆极化微带天线第54页/共133页微带天线的其他形式导体贴片一般是规则形状的面积单元,如矩形、圆形或圆环形薄片等,也可以是窄长条形的薄片振子(对称阵子)。由这两种单元形成的微带天线分别称为微带贴片天线和微
7、带振子天线,如图12-21(a)、(b)所示。微带天线的另一种形式是利用微带线的某种形变(如弯曲、直角弯头等)来形成辐射,称为微带线型天线,如图12-21(c)所示。因为这种天线沿线传输行波,故又称为微带行波天线。微带天线的第四种形式是利用开在接地板上的缝隙,由介质基片另一侧的微带线或其他馈线(如稽线)对其馈电,称之为微带缝隙天线,如图12-21(d)所示。由各种微带辐射单元可构成多种多样的阵列天线,如微带贴片阵天线、微带振子阵天线,等等。第55页/共133页图 12-21 微带天线的四种形式第56页/共133页图12-22 为两种馈电形式的矩形微带天线示意图,图(a)是背馈,同轴线的外导体与
8、接地板连接,内导体穿过介质与贴片天线焊接;图(b)为侧馈,通过阻抗变换与微带线连接。第57页/共133页图 12-22 微带天线的两种馈电方式第58页/共133页微带天线馈电大多数微带天线只在介质基片的一面上有辐射单元,因此,可以用微带天线或同轴线馈电。因为天线输入阻抗不等于通常的50传输线阻抗,所以需要匹配。匹配可由适当选择馈电的位置来做到。但是,馈电的位置也影响辐射特性。图3-7 微带线馈电的天线图3-9 同轴馈电的微带天线第59页/共133页微带馈电中心微带馈电和偏心微带馈电。馈电点的位置也决定激励那种模式。当天线元的尺寸确定以后,可按下法进行匹配:先将中心馈电天线的贴片同50的馈线一起
9、光刻,测量输入阻抗并设计出匹配变阻器;再在天线元与馈线之间接入该匹配变阻器,重新做成天线。另外,如果天线的几何图形只维持主模,则微带馈线可偏向一边以得到良好的匹配。特定的天线模可用许多方法激励。如果场沿矩形贴片的宽度变化,则当馈线沿宽度移动时,输入阻抗随之而变,从而提供了一种阻抗匹配的简单办法。馈电位置的改变,使得馈线和天线之间的耦合改变,因而使谐振频率产生一个小的漂移,而辐射方向图仍然保持不变。不过,稍加改变贴片尺寸或者天线尺寸,可补偿谐振频率的漂移。第60页/共133页同轴线馈电各种同轴激励示于图3-。在所有的情况中,同轴插座安装在印制电路板的背面,而同轴线内导体接在天线导体上。对指定的模
10、,同轴插座的位置可由经验去找,以便产生最好的匹配。使用N型同轴插座的典型微带天线示于图3-中。图3-9 同轴馈电的微带天线第61页/共133页同轴馈电模拟根据惠更斯原理,同轴馈电可以用一个由底面流向顶面的电流圆柱带来模拟。这个电流在地板上被环状磁流带圈起来,同轴线在地板上的开口则用电壁闭合。如果忽略磁流的贡献,并假定电流在圆柱上是均匀的,则可进一步简化。简化到最理想的情况是,取出电流圆柱,用一电流带代替,类似微带馈电的情况。该带可认为是圆柱的中心轴,沿宽度方向铺开并具有等效宽度的均匀电流带,对于给定的馈电点和场模式,等效宽度可以根据计算与测量所得的阻抗轨迹一致性经验地确定。一旦这个参数确定了,
11、它就可以用在除馈电点在贴片边缘上以外的任何馈电位置和任何频率。当馈电点在贴片边缘上时,可以认为,在贴片边缘上的边缘场使等效馈电宽度不同于它在天线内部时的值。在矩形天线中,等效宽度为同轴馈线内径的五倍时,可给出良好的结果。图3-10 同轴线馈电的微带天线第62页/共133页矩形微带天线作为独立天线应用时采用背馈方式,而作为单板微带天线的阵元时必须采用侧馈方式。在制作侧馈的矩形微带天线时,可按下述方法实现匹配:将中心馈电天线的贴片同50 馈线一起光刻制作,实测其输入阻抗并设计出匹配器,然后在天线辐射元与微带馈线间接入该变换器。任何形式的平面几何结构都可以用作微带天线,图12-23是部分微带天线形式
12、。第63页/共133页图 12-23 微带天线的其他结构(a)常用形式;(b)可能结构第64页/共133页微带行波天线微带行波天线(MTA)是由基片、在基片一面上的链形周期结构或普通的长TEM波传输线(也维持一个TE模)和基片另一面上的地板组成。TEM波传输线的末端接匹配负载,当天线上维持行波时,可从天线结构设计上使主波束位于从边射到端射的任意方向。图3-5 微带行波天线第65页/共133页微带缝隙天线微带缝隙天线由微带馈线和开在地板上的缝隙组成。缝隙可以是矩形(宽的或窄的),圆形或环形。窄缝 圆环缝 宽缝 圆贴片缝图3-6 微带缝隙天线第66页/共133页圆盘微带天线的设计实例圆盘形微带天线
13、是另一种基本形式。参数包括圆盘半径、馈电位置、输入阻抗、天线Q值、辐射效率、总效率、输入VSWR及频带、辐射方向图。计算过程复杂,已有图表和软件可使用。下面给出圆盘半径计算公式,并以900 MHz天线为例。圆盘半径为(12-23)第67页/共133页式中设计实例:设计900 MHz圆盘微带天线,介质参数为4.5/1.6。(1)确定参数。天线的拓扑结构为:设计频率f0=0.9 GHz,最大输入驻波比VSWR=2.01,基板参数为高度h=0.16 cm,介电常数r=4.5,损耗正切 tan=0.015,导体铜的=1.0。第68页/共133页(2)利用公式求出圆盘圆形天线的半径、接头馈入位置、频率与
14、输入阻抗的关系。半径=4.580 cm 馈电点=1.800 cm频率与阻抗对应关系如表 12-1 所示。第69页/共133页表 12-1 频率与阻抗对应关系 第70页/共133页频带内阻抗在圆图上的位置如图 12-24(a)所示。(3)利用公式求出天线的总Q值、辐射效率、总效率、天线频带宽度。计算结果:输入阻抗50.90 ohms 矩形片总 Q=47.639 辐射效率=95.97%总效率=21.10%相对带宽=1.48%阻波比2.001 VSWR 第71页/共133页(4)利用公式求得天线的辐射方向图,如图 12-24(b)、(c)所示。(5)圆盘天线的实际结构如图12-24(d)所示。第72
15、页/共133页图 12-24 圆盘形微带天线结构图第73页/共133页12.7矩形微带天线的设计 第74页/共133页(一)实验目的了解微带天线设计的基本流程掌握矩形微带天线的设计方法熟悉在ADS的layout中进行射频电路设计的方法第75页/共133页(二)设计要求用陶瓷基片(r9.8),厚度h1.27mm,设计一个在3GHz附近工作的矩形微带天线。基片选择的理由是:陶瓷基片是比较常用的介质基片,其常用的厚度是h1.27mm,0.635mm,0.254mm。其中1.27mm的基片有较高的天线效率,较宽的带宽以及较高的增益。第76页/共133页(三)微带天线的技术指标辐射方向图天线增益和方向性
16、系数谐振频率处反射系数天线效率第77页/共133页(四)设计的总体思路计算相关参数在ADS的Layout中初次仿真在Schematic中进行匹配修改Layout,再次仿真,完成天线设计第78页/共133页(五)相关参数的计算需要进行计算的参数有贴片宽度W贴片长度L馈电点的位置z馈线的宽度第79页/共133页(五)相关参数的计算(续)贴片宽度W、贴片长度L、馈电点的位置z可由公式计算得出馈线的宽度可以由Transmission Line Calculator 软件计算得出第80页/共133页(五)相关参数的计算(续)第81页/共133页(六)用ADS设计过程有了上述的计算结果,就可以用ADS进行
17、矩形微带天线的设计了下面详细介绍设计过程第82页/共133页ADS软件的启动启动ADS进入如下界面第83页/共133页创建新的工程文件进入ADS后,创建一个新的工程,命名为rect_prj。打开一个新的layout文件,首先设定度量单位。在ADS中,度量单位的缺省值为mil,把它改为mm。方法是:单击鼠标右键PreferencesLayout Units,如下图所示第84页/共133页设定度量单位第85页/共133页介质层设置在ADS的Layout中进行设计,介质层和金属层的设置很重要在菜单栏里选择MomentumSubstrateCreate/Modify,在Substrate Layer标
18、签里,保留FreeSpace和/GND/的设置不变,点击Alumina层,修改其设置为:第86页/共133页介质层设置(续)第87页/共133页金属层设置点击Metallization Layers标签,在Layout Layer下拉框中选择cond,然后在右边的Definition下拉框中选择Sigma(Re,thickness),参数设置如下页图。然后在Substrate Layer栏中选择“-”后,点击“Strip”按钮,这将看到“-Strip cond”。一切完成后,点击OK。第88页/共133页金属层设置(续)第89页/共133页在Layout中制版准备工作做好以后,下面就可以进行L
19、ayout中的作图了。先选定当前层为v cond,再按照前面计算出来的尺寸作图。最后在馈线端加入端口第90页/共133页在Layout中制版(续)第91页/共133页仿真预设置在进行layout仿真之前,先要进行预设置。在菜单栏选择Momentum-Mesh-Setup,选择Global标签。鉴于ADS在Layout中的Momentum仿真是很慢的,在允许的精度下,可以把“Mesh Frequency”和“Number of Cells per Wavelength”设置得小一点第92页/共133页仿真预设置(续)第93页/共133页进行仿真点击Momentum-Simulation-S-pa
20、rameter弹出仿真设置窗口,该窗口右侧的Sweep Type选择Linear,Start、Stop分别选为2.5GHz、3.5GHz,Frequency Step选为0.05GHz。Update后,点击Simulation按钮。第94页/共133页仿真结果第95页/共133页对仿真结果的探讨 由上图可见,理论上的计算结果与实际的符合还是相当不错的,中心频率大约在2.95GHz左右。只是中心频率处反射系数S11还比较大,从而匹配不理想,在3GHz处,m1距离圆图上的坐标原点还有相当的距离。在3GHz下的输入阻抗是:Z0*(0.103-j0.442)5.15j22.1 第96页/共133页总体
21、的2D辐射方向图第97页/共133页在原理图中进行匹配为了进一步减小反射系数,达到较理想的匹配,并且使中心频率更加精确,可以在Schmatic中进行匹配。天线在3GHz下的输入阻抗是:Z0*(0.103-j0.442)5.15j22.1,这可以等效为一个电阻和电容的串连。第98页/共133页匹配原理匹配的原理是:串联一根50欧姆传输线,使得S11参数在等反射系数圆上旋转,到达g=1的等g圆上,然后再并联一根50欧姆传输线,将S11参数转移到接近0处。所需要计算的就是串连传输线和并联传输线的长度 ADS原理图中优化功能可以出色的完成这个任务 第99页/共133页匹配过程新建一个Schematic
22、文件,绘出如下的电路图:第100页/共133页匹配过程(续)其中TL1和TL2的L是待优化的参量,初值取10mm,优化范围是1mm到20mm。设置好MSub的值第101页/共133页匹配过程(续)插入S参数优化器,一个Goal。其中Goal的参数设置如下:这里dB(S(1,1)的最大值设为-50dB,是因为在Schematic中的仿真要比在Layout中的仿真理想得多,所以要求设置得比较高,以期在Layout中有较好的表现。第102页/共133页匹配过程(续)设置好OPTIM。常用的优化方法有Random(随机)、Gradient(梯度)等。随机法通常用于大范围搜索,梯度法则用于局部收敛。这里
23、选择Random。优化次数可以选得大些。这里设为300。其他的参数一般设为缺省即可。第103页/共133页匹配过程(续)优化电路图为:第104页/共133页匹配过程(续)点击仿真按钮,当CurrentEF0时,优化目标完成。把它update到原理图上(SimulateUpdate Opimization Values)。Deactivate优化器。最终原理图如下:第105页/共133页匹配过程(续)第106页/共133页原理图中的仿真点击仿真按钮,可以看到仿真结果为:第107页/共133页原理图中的仿真(续)放置Marker可以得到更详细的数据在中心频率f3GHz处,S(1,1)的幅值是5.5
24、39E-4,可见已经达到相当理想的匹配。第108页/共133页修改Layout参照Schematic计算出来的结果,修改Layout图形如下第109页/共133页两点说明由于这里是手工布板,而不是由Schematic自动生成的,传输线的长度可能需要稍作调整(但不超过1mm)。注意要把原先的3mm馈线长度也算进去。为了方便输入,在电路的左端加了一段50的传输线。其长度对最终仿真结果的影响微乎其微。这里取1mm。第110页/共133页仿真结果按照前述的步骤进行仿真,仿真结果是第111页/共133页仿真结果(续)为了较精确地给出匹配的结果,我们将仿真频率范围设为2.9GHz到3.1GHz,步长精确到
25、10MHz。可见进行原理图匹配的结果是十分理想的。下面具体给出一些仿真结果。第112页/共133页总体的2D辐射方向图 第113页/共133页天线增益和方向性系数 第114页/共133页天线效率第115页/共133页(七)设计小结矩形微带天线设计是微带天线设计的基础,然而作为一名新手,想熟练顺利地掌握其设计方法与流程却也有些路要走。多仿照别人的例子操作,多自己动手亲自设计,多看帮助文件,是进入射频与微波设计殿堂的不是捷径的捷径。第116页/共133页(七)设计小结(续)一般来说,按照公式计算出来的矩形天线其反射系数都还会比较大的,在圆图中反映出来的匹配结果也不是很理想。这也许是由一些公式的近似
26、导致的,但这也使电路匹配成为设计工作必不可少的一环。在用Schematic进行天线的匹配时,以S11为目标利用仿真优化器来求所需传输线长度的方法,是一种省时省力有效的方法。第117页/共133页Thank you!fugw 2003.6第118页/共133页12.7 12.7 天线阵和相控阵单个天线的波束宽度与增益的矛盾限制了它的使用。在有些场合,要用更高的增益和更窄的波束。由于天线的尺寸与工作波长有关,必须用多个天线形成极窄波束。天线阵把能量聚焦于同一个方向,增加了系统的作用距离。第119页/共133页天线阵考虑图12-25 所示的沿z方向分布的一维天线阵,总辐射场为每个单元的叠加。第120
27、页/共133页图 12-25 沿z方向分布的一维n元相控阵第121页/共133页远区场幅度相等,即r1=r2=r3=rN=r (12-24)每个天线单元的家间距为d,引起的相移为,由距离引起的相移分别是r1=rr2=r+dcosrN=r+(N-1)dcos (12-25)故总场强为(12-26)第122页/共133页 式(12-26)称为方向图乘积原理。阵因子AF与单元的分布有关。相控阵 考虑波束扫描情况,假定每个天线单元都相同,相位从左到右步进增加,如图12-26 所示。第123页/共133页图 12-26 N元天线阵的辐射方向 第124页/共133页阵因子为相邻单元的步进相移决定了辐射方向
28、0。由式(12-15)知,辐射最大方向发生在=0的条件下。此时,有=k0dcos=k0dsin0 式中(12-27)(12-28)第125页/共133页扫描角度为 的变化必须满足式(12-29)所限定的扫描角(波束方向),或者说,改变可以调整天线的辐射方向。这就是相控阵的原理。在相控阵中,天线的总波束宽度和增益与天线单元的数量有关。通常,为了避免旁瓣,间距为半波长,笔形波束的半功率宽度与单元数的关系为HPWB100-1/2 (12-29)(12-30)第126页/共133页总增益为GN 在相控阵中,可以电子控制每个单元的相位,保证辐射方向上的波前面相位相同,实现波束的调整。与机械旋转天线的方式
29、比较,相控阵速度快,天线机构简单,系统稳定。阵因子是个周期函数,在不同方向都会出现最大值,称为栅瓣。=2的整数倍为栅瓣的发生条件。在图12-26 中,=2,栅瓣发生在主瓣的反方向,180。由式(12-29)可得(12-31)第127页/共133页为了避免栅瓣的出现,相邻单元的距离必须小于式(12-31)的计算值。在两个方向上调整单元的相位和间距,就是两维相控阵,可在两个相互垂直的方向上实现扫描。阵因子AF为(12-32)第128页/共133页式中,dx 和dy分别是x和y方向的单元间距,x和y分别是x和y方向的单元相移量。天线阵的馈电有两种基本形式:并联形式和串联形式,如图12-27所示。图(a)中用的3dB功率分配器,每个支路都有一定的损耗,但分配均匀对称,图(b)中每个天线在一定的位置与传输线耦合。第129页/共133页 图 12-27 天线阵的两种馈电形式(a)并联形式;(b)串联形式第130页/共133页图12-28 是个1616相控阵天线,256个天线单元采用并联馈电的方式,总的输入信号在阵列中央,用功分器把功率送到每个单元。第131页/共133页图 12-28 1616 相控阵天线第132页/共133页感谢您的观看!第133页/共133页
限制150内