统计学第8章相关与回归分析幻灯片.ppt
《统计学第8章相关与回归分析幻灯片.ppt》由会员分享,可在线阅读,更多相关《统计学第8章相关与回归分析幻灯片.ppt(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、统计学第8章相关与回归分析第1页,共66页,编辑于2022年,星期二 学习目标1.1.变量间的相关关系与相关系数的计算变量间的相关关系与相关系数的计算2.2.总体回归函数与样本回归函数总体回归函数与样本回归函数3.3.线性回归的基本假定线性回归的基本假定4.4.简单线性回归参数的估计与检验简单线性回归参数的估计与检验5.5.多元线性回归参数的估计与检验多元线性回归参数的估计与检验6.6.多个变量的线性相关关系:复相关系数和偏相多个变量的线性相关关系:复相关系数和偏相多个变量的线性相关关系:复相关系数和偏相多个变量的线性相关关系:复相关系数和偏相 关系数关系数关系数关系数7.7.常用的可以转换为
2、线性回归的非线性函数常用的可以转换为线性回归的非线性函数8.8.非线性相关指数非线性相关指数第2页,共66页,编辑于2022年,星期二实例实例1:1:中国妇女生育水平的决定因素是什么中国妇女生育水平的决定因素是什么?妇女生育水平除了受计划生育政策影响以外,还可能与社会、经济、文化等多种因素有关。1.影响中国妇女生育率变动的因素有哪些?2.各种因素对生育率的作用方向和作用程度如何?3.哪些因素是影响妇女生育率主要的决定性因素?4.如何评价计划生育政策在生育水平变动中的作用?5.计划生育政策与经济因素比较,什么是影响生育率的 决定因素?6.如果某些地区的计划生育政策及社会、经济、文化 等因素发生重
3、大变化,预期对这些地区的妇女生育 水平会产生怎样的影响?第3页,共66页,编辑于2022年,星期二据世界卫生组织统计,全球肥胖症患者达3亿人,其中儿童占2200万人,11亿人体重过重。肥胖症和体重超常早已不是发达国家的“专利”,已遍及五大洲。目前,全球因”吃”致病乃至死亡的人数已高于因饥饿死亡的人数。(引自光明日报刘军/文)问题:肥胖症和体重超常与死亡人数真有显著 的数量关系吗?这些类型的问题可以运用相关分析与回归分析的方法这些类型的问题可以运用相关分析与回归分析的方法去解决。去解决。实例2:全球吃死的人比饿死的人多?第4页,共66页,编辑于2022年,星期二8.1 8.1 相关与回归的基本概
4、念相关与回归的基本概念一、变量间的相互关系变量间的相互关系二、相关关系的类型二、相关关系的类型三、相关分析与回归分析三、相关分析与回归分析第5页,共66页,编辑于2022年,星期二 一、变量间的相互关系一、变量间的相互关系 确定性的函数关系确定性的函数关系 Y=f(X)不确定性的统计关系相关关系相关关系 Y=f(X)+(为随机变量)没有关系没有关系 变量间关系的图形描述:坐标图(散点图)第6页,共66页,编辑于2022年,星期二相关关系的类型相关关系的类型 从涉及的变量数量变量数量看 简单相关 多重相关(复相关)从变量相关关系的表现形式表现形式看 线性线性相关散布图接近一条直线(左图)非线性非
5、线性相关散布图接近一条曲线(右图)第7页,共66页,编辑于2022年,星期二从变量相关关系变化的方向方向看正相关正相关变量同方向变化 A 同增同减(A)(A)负相关负相关变量反方向变化 一增一减(B)(B)B从变量相关的程度看 完全相关(B)不完全相关(A)C 不相关(C)相关关系的类型相关关系的类型第8页,共66页,编辑于2022年,星期二相关分析与回归分析相关分析与回归分析回归的古典意义古典意义:高尔顿遗传学的回归概念高尔顿遗传学的回归概念 父母身高与子女身高的关系父母身高与子女身高的关系:无论高个子或低个子的子女无论高个子或低个子的子女 都有向人的平均身高回归的都有向人的平均身高回归的
6、趋势趋势第9页,共66页,编辑于2022年,星期二 回归的现代意义回归的现代意义一个因变量对若干解释变量依存关系的研究回归的目的目的(实质)(实质):由固定的自变量去估计因变量的平均值由固定的自变量去估计因变量的平均值样样样样本本本本总总体体自变量固定值自变量固定值自变量固定值自变量固定值自变量固定值自变量固定值估计因变估计因变量平均值量平均值第10页,共66页,编辑于2022年,星期二 相关分析与回归分析的联系共同的研究对象:都是对变量间相关关系的分析只有当变量间存在相关关系时,用回归分析去寻求相关的具体数学形式才有实际意义相关分析只表明变量间相关关系的性质和程度,要确定变量间相关的具体数学
7、形式依赖于回归分析 相关分析中相关系数的确定建立在回归分析的基础上第11页,共66页,编辑于2022年,星期二8 82 2 简单线性相关与回归分析简单线性相关与回归分析一、简单线性相关系数及检验一、简单线性相关系数及检验二、总体回归函数与样本回归函数二、总体回归函数与样本回归函数三、回归系数的估计三、回归系数的估计四、简单线性回归模型的检验四、简单线性回归模型的检验 五、简单线性回归模型预测五、简单线性回归模型预测第12页,共66页,编辑于2022年,星期二 一、简单线性相关系数及检验一、简单线性相关系数及检验 总体相关系数总体相关系数 对于所研究的总体,表示两个相互联系变量相关程度 的总体相
8、关系数为:总体相关系数反映总体两个变量总体相关系数反映总体两个变量X X和和Y Y的线性相关程度。的线性相关程度。特点:特点:对于特定的总体来说,X和Y的数值是既定的 总体相关系数是客观存在的特定数值。第13页,共66页,编辑于2022年,星期二 样本相关系数 通过X和Y 的样本观测值去估计样本相关系数变量X和Y的样本相关系数通常用 表示 特点:样本相关系数是根据从总体中抽取的随机样本 的观测值计算出来的,是对总体相关系数的估 计,它是个随机变量。第14页,共66页,编辑于2022年,星期二 相关系数的特点:相关系数的取值在-1与1之间。当r=0时,表明X与Y没有线性相关关系。当 时,表明X与
9、Y存在一定的线性相关关系:若 表明X与Y 为正相关;若 表明X与Y 为负相关。当 时,表明X与Y完全线性相关:若r=1,称X与Y完全正相关;若r=-1,称X与Y完全负相关。第15页,共66页,编辑于2022年,星期二 使用相关系数的注意事项:X和Y 都是相互对称的随机变量,所以相关系数只反映只反映变量间的线性相关程度,不 能说明非线性相关关系。相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。第16页,共66页,编辑于2022年,星期二 相关系数的检验 为什么要检验?为什么要检验?样本相关系数是随抽样而变动的随机变量,相关系数的统计显著性还有待检验。检验的依据:检验的依据
10、:如果X和Y都服从正态分布,在总体相关系数 的假设下,与样本相关系数 r 有关的 t 统计量服从自由度为n-2的 t 分布:第17页,共66页,编辑于2022年,星期二 相关系数的检验方法给定显著性水平 ,查自由度为 n-2 的临界值 若 ,表明相关系数 r 在统计上是显著的,应否定 而接受 的假设;反之,若 ,应接受 的假设。第18页,共66页,编辑于2022年,星期二 二、总体回归函数与样本回归函数二、总体回归函数与样本回归函数 若干基本概念 Y的条件分布条件分布:Y在X取某固定值条件下的分布。对于X的每一个取值,都有Y的条件期望条件期望与之对应,在坐标图上 Y的条件期望的点随X而变化的轨
11、迹所形成的直线或曲线,称为回归线回归线。如果把Y的条件期望 表示为X的某种函数:,这个函数称为回归函数回归函数。如果其函数形式是只有一个自变量的线性函数,如 ,称为简单线性回归函数简单线性回归函数。第19页,共66页,编辑于2022年,星期二 总体回归函数(PRF)概念:将总体因变量Y的条件均值表现为自变量X的某种函数,这个函数称为总体回归函数(简记为PRF)。表现形式:(1)条件均值表现形式(2)个别值表现形式(随机设定形式)第20页,共66页,编辑于2022年,星期二 样本回归函数(SRF)概念:概念:Y的样本观测值的条件均值随自变量X而变动的轨迹,称为样本回归线样本回归线。如果把因变量Y
12、的样本条件均值表示为自变量X的某种函数,这个函数称为样本回归函数样本回归函数 (简记为SRF)。表现形式:表现形式:线性样本回归函数可表示为 或者 第21页,共66页,编辑于2022年,星期二 样本回归函数与总体回归函数的关系 相互联系 样本回归函数的函数形式应与设定的总体回归函数的函数形式一致。和 是对总体回归函数参数的估计。是对总体条件期望 的估计 残差 e 在概念上类似总体回归函数中的随机 误差u。回归分析的目的:用样本回归函数去估计总体回归函数。第22页,共66页,编辑于2022年,星期二样本回归函数与总体回归函数的关系 相互区别 总体回归函数虽然未知,但它是确定的;样本回归线随抽样波
13、动而变化,可以有许多条。样本回归线还不是总体回归线,至多只是未知总体 回归线的近似表现。总体回归函数的参数虽未知,但是确定的常数;样本回归函数的参数可估计,但是随抽样而变化的随机变量。总体回归函数中的 是不可直接观测的;而样本回归函数中的 是只要估计出样本回归的参数就可以计算的数值。第23页,共66页,编辑于2022年,星期二 三、回归系数的估计三、回归系数的估计回归系数估计的思想:回归系数估计的思想:为什么只能对未知参数作估计为什么只能对未知参数作估计?参数是未知的、不可直接观测的、不能精确计算的参数是未知的、不可直接观测的、不能精确计算的 能够得到的只是变量的样本观测值能够得到的只是变量的
14、样本观测值结论结论:只能通过变量样本观测值选择适当方法去近似只能通过变量样本观测值选择适当方法去近似 地估计回归系数。地估计回归系数。前提前提:u u是随机变量其分布性质不确定,必须作某些是随机变量其分布性质不确定,必须作某些 假定,其估计才有良好性质,其检验才可进行。假定,其估计才有良好性质,其检验才可进行。原则原则:使参数估计值使参数估计值“尽可能地接近尽可能地接近”总体参数真实值总体参数真实值第24页,共66页,编辑于2022年,星期二 简单线性回归的基本假定假定假定1 1:零均值假定。假定假定2 2:同方差假定。假定假定3 3:无自相关假定。假定4:随机扰动 与自变量 不相关。假定假定
15、5 5:正态性假定第25页,共66页,编辑于2022年,星期二 回归系数的回归系数的最小二乘估计估计基本思想:希望所估计的 偏离实际观测值 的残差 越小越好。可以取残差平方和 作为衡量 与 偏离程度的标准最小二乘准则估计式:第26页,共66页,编辑于2022年,星期二 最小二乘估计的性质 高斯高斯马尔可夫定理马尔可夫定理 前提:在基本假定满足时最小二乘估计是因变量的线性函数线性函数 最小二乘估计是无偏估计无偏估计,即 在所有的线性无偏估计中,回归系数的最小二乘估计的方差最小方差最小。结论:回归系数的最小二乘估计是最佳线性无偏估计最佳线性无偏估计第27页,共66页,编辑于2022年,星期二 最小
16、二乘估计的概率分布性质最小二乘估计的概率分布性质 和和 都是服从正态分布的随机变量,其期都是服从正态分布的随机变量,其期望为望为方差和标准误差为方差和标准误差为 结论:结论:第28页,共66页,编辑于2022年,星期二 的无偏估计 为什么要估计?确定所估计参数的方差需要 由于 不能直接观测,也是未知的 对 的数值只能通过样本信息去估计。怎样估计?可以证明 的无偏估计为:第29页,共66页,编辑于2022年,星期二 拟合优度的度量拟合优度的度量 基本思想:基本思想:样本回归直线是对样本数据的一种拟合,不同估计方法可拟合出不同的回归线。样本回归拟合优度的度量建立在对因变量总离差平方和分解的基础上
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计学 相关 回归 分析 幻灯片
限制150内