滑模变结构控制的应用电子电路工程科技专业资料.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《滑模变结构控制的应用电子电路工程科技专业资料.pptx》由会员分享,可在线阅读,更多相关《滑模变结构控制的应用电子电路工程科技专业资料.pptx(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、4211.1 1.1 滑模变结构控制简介滑模变结构控制简介滑模变结构控制简介滑模变结构控制简介 人为设定一经过平衡点的相轨迹,通过适当设计,系统状态点沿着此相轨迹渐近稳定到平衡点。优点优点 :滑动模态可以设计且与对象参数和扰动无关,具有快速响应、对参数变化和扰动不灵敏(鲁棒性)、无须系统在线辨识、物理实现简单。缺点缺点 :当状态轨迹到达滑动模态面后,难以严格沿着滑动模态面向平衡点滑动,而是在其两侧来回穿越地趋近平衡点,从而产生抖振滑模控制实际应用中的主要障碍。26 三月 2023第1页/共34页422正常运动段:位于切换面之外,如图 段所示。滑动模态运动段:位于切换面上的滑动模态 区之内,如图
2、的 段所示。滑模变结构控制的整个控制过程滑模变结构控制的整个控制过程组成:组成:1.1 1.1 滑模变结构控制简介滑模变结构控制简介滑模变结构控制简介滑模变结构控制简介26 三月 2023第2页/共34页423滑动模态运动段的品质改善:滑动模态运动段的品质改善:选择控制律 :使正常运动段的品质得到提高。(趋近律方法)选择切换函数 :使滑动模态运动段的品质改善。1.2 1.2 滑模变结构控制的品质滑模变结构控制的品质26 三月 2023第3页/共34页424几种常见趋近律:(1)等速趋近律(2)指数趋近律指数趋近律(3)幂次趋近律(4)一般趋近律1.2 1.2 滑模变结构控制的品质滑模变结构控制
3、的品质注:合理的趋近律设计可以在远离切换面时,使运动点趋向切换面的速度增大,以加快系统动态响应;在趋近切换面时,其速度渐进于零,以减弱抖振。26 三月 2023第4页/共34页4251.3 1.3 滑模变结构控制系统设计滑模变结构控制系统设计包括两方面:(1)选择切换函数,或者说确定切换面 ;SISO系统线性切换函数(普遍):MIMO系统线性切换函数:其中,考虑有m个输入,。26 三月 2023第5页/共34页4261.3 1.3 滑模变结构控制系统设计滑模变结构控制系统设计(2)求取控制律 采用到达条件 ,求得控制律的一个不等式,需要在满足此不等式的条件下选择合适的控制律。采用趋近律方法,可
4、直接求取等式型控制律。26 三月 2023第6页/共34页4272.1 永磁同步电机数学模型永磁同步电机数学模型 为了简化分析,在建立永磁同步电动机数学模型时,作如下处理。假设转子永磁磁场在气隙空间分布为正弦波;忽略定子铁心饱和,认为磁路为线性,电感参数不变;不计铁心涡流与磁滞损耗;转子上无阻尼绕组。CP三相交流电压方程三相交流电压方程 -坐标系下电压方程坐标系下电压方程d-qd-q坐标系下电压方程坐标系下电压方程26 三月 2023第7页/共34页428式中:、分别为d轴上的电压和电流分量;、分别为q轴上的电压和电流分量;Ld、Lq分别为直、交轴电感;R为电机的定子绕组电阻;re为电机的电角
5、速度;为永磁体与定子交链磁链。(1)2.1 永磁同步电机数学模型永磁同步电机数学模型26 三月 2023第8页/共34页429永磁同步电机的转矩方程为:式中:Te Te 为永磁同步电机的转矩;p p 为电机的极对数。对于表面式 PMSM 有Ld=Lq=LLd=Lq=L,所以转矩方程可简化为:(2)2.1 永磁同步电机数学模型永磁同步电机数学模型26 三月 2023第9页/共34页4210PMSM 的运动方程为:式中:为负载转矩;为电机的机械角速度;B B、J J 分别为电机的摩擦系数和转动惯量。(3)2.1 永磁同步电机数学模型永磁同步电机数学模型26 三月 2023第10页/共34页4211
6、2.2 控制器的设计控制器的设计取 PMSM 系统的状态变量为式中 和 分别为给定的电机期望转速和实际转速。在常规滑模面中加入状态量的积分量,可以有效消除稳态误差。合理选取积分初始值,便可以使系统开始就在滑模面上运动,使系统具有全局鲁棒性。(4)26 三月 2023第11页/共34页4212结合式(2)、(3)()求导 :(5)2.2 控制器的设计控制器的设计26 三月 2023第12页/共34页4213本文在常规滑模面的基础上加入状态量的积分量,可以得到积分滑模面s s为:选取积分初始值 为:(6)(7)式中:为 的初始状态;为积分初始值;c c 为积分常数,可设定为一个正常数。当 t=0
7、t=0 时,s=0s=0,即系统开始就在滑模面上运动,这样系统便具有全局鲁棒性。2.2 控制器的设计控制器的设计26 三月 2023第13页/共34页4214式(6)(6)中,令 s=0=0 并对时间 t 求导可得:式(8)(8)表示速度误差以时间常数 1/c 1/c 为指数趋近于零。()因此,滑模运动的动态特性可以通过选择系数 c c 来预先规定。(8)2.2 控制器的设计控制器的设计26 三月 2023第14页/共34页4215 2.2.3 3 控制律的求取控制律的求取式(6)对 t t 求导可得:(9)为提高系统的动态品质,采用指数趋近律法来设计控制器。指数趋近律的表达式为:式中、k k
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 滑模变 结构 控制 应用 电子电路 工程 科技 专业 资料
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内