《传输原理-第四章精选PPT.ppt》由会员分享,可在线阅读,更多相关《传输原理-第四章精选PPT.ppt(102页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、传输原理-第四章第1页,此课件共102页哦4.1 流体运动的两种状态4.1.1雷诺试验雷诺试验十九世纪初期,人们就发现,在不同的条件下,流体质点的运动情况可能表现为两种不同的状态,一种是流体质点作有规则的运动,在运动过程中质点之间互不混杂,互不干扰互不混杂,互不干扰;另一种是流体质点的运动是非常混乱非常混乱的。关于实际流体这样两种运动状态的存在,一直到1883年英国科学家雷诺(Reynold)作了著名的雷诺试验,才使这一问题得到了科学的说明。泾渭分明泾渭分明雷诺雷诺2第2页,此课件共102页哦实验要点:实验要点:实验中始终保持水箱中水位恒定不变及流体温度不变。实验现象:实验现象:首先稍微开启阀
2、门K,流体便开始缓慢的由水箱G中流出。然后将细管上的阀门P稍微开启,则有色液体由细管T1流入玻璃管T中,在T管中形成一条细直而又鲜明的染色流束。如图4-2(a)雷诺试验的装置3第3页,此课件共102页哦4第4页,此课件共102页哦从细管中所流出的一条染色流束在T管中形成一条直线,且很稳定。随后若将阀门K再稍微开大一些,则玻璃管中流体的速度随之增大,但上述现象仍然不变,染色流束仍保持稳定状态。但当K开启到一定程度时,即管中流速增加到某一数值时,我们就会发现染色流束不再是直线,而开始弯曲,并不断的摆动,或称之为脉动脉动,而它的曲线就成为弯曲的不规则的,如图4-2(b)所示。随着K进一步开大,管中流
3、速继续加快,染色流束开始出现了破裂,并失去了原来清晰的形状,最后被它周围的流体所冲毁,使得玻璃管内的流体都被染色了,如图4-2(c)所示。此时流体质点的运动是非常混乱的。5第5页,此课件共102页哦实验结论实验结论 当流体流动速度不同时,流体质点的运动就可能存在两种完全不同的情况层流运动层流运动:当速度小于某一临界值时,流体是作有规则的层状运动,流体质点互不干扰的前进,质点轨迹为平滑的随时间变化较慢的曲线。湍流湍流(或紊流或紊流)运动运动:当速度大于该临界值时,流体质点有规则的运动受到破坏,流体质点产生脉动,即除了主要的纵向运动以外,还有附加的横向运动,与周围流体混掺,随机、非定常、三维有旋流
4、。6第6页,此课件共102页哦湍流由层流转变为紊流时的平均流速,称之为上临界速度上临界速度,以uc表示。上述试验也可按相反的程序进行,即首先开足阀门K,然后再逐断关小。这样玻璃管的流体开始为湍流,当流速降低到某一数值时,则流体的运动由湍流转变为层流,以后继续降低流速,流体将始终保持为层流状态。此时由湍流转变为层流时的平均速度,称之为下临界速度下临界速度,并以uc表示。试验结果表明:下临界进度总是小于上临界速度,即 uc uc7第7页,此课件共102页哦由此可以得出判别管中流动状态的几点结论:1)当管中流速u uc时,则一定是紊流状态。3)当管中流速介于上、下临界速度之间,即uc u惯性力作用,
5、能够削弱甚至消除由于惯性力引起的扰动,使流体保持层流状态。Re:惯性力粘性力作用,惯性力引起的扰动强,使流体保持紊流状态。10第10页,此课件共102页哦(1)圆管流动 上临界雷诺度:Re=12000(或更大)下临界雷诺度:Re=2320 (2300)上临界雷诺度容易因试验条件而变动,各人的试验结果不一样,有的高达40000以上,在流体力学中,圆管内里的流动状态判别标准为:Re2300流体是紊流流动 Re2300流体是层流流动 在实际工程中,下临界雷诺数有的更小,取 Re=2000 11第11页,此课件共102页哦(2)非圆形面积(过水断面)非圆形面积(过水断面)可用其水力学半径作为特征长度R
6、=A/L,其临界雷诺数Re=uR/为:Re500流体流动为紊流;Re500流体流动为层流;对工程中常见的明渠流动,其判别标准为:Re300 流体流动为紊流;Re300流体流动为层流;(3)流体饶过固体物)流体饶过固体物可用固体物的特征长度L代替d,其临界雷诺数Re=uL/为Re1流体流动为紊流;Re1流体流动为层流;12第12页,此课件共102页哦13第13页,此课件共102页哦二紊流流动二紊流流动紊流是一种复杂的,但又是在工程实践中经常遇到的流动状态,从雷诺实验可知,当Re2300时,管道中的流动即为紊流状态,1.紊流流动的时均值和脉动值紊流流动的时均值和脉动值紊流时,流体质点在运动过程中不
7、断地互相掺混,因此,质点的速度和压强都不断地随时间而变化,发生不规则的脉动现象。实质上紊流是一种非稳定流动,如果在流场中通过空间某一固定点来测量流体质点的速度,则可发现速度是随时间而脉动的,图所示的是用热线测速仪测出的管道中某点的流速与时间变化的曲线,通过大量对紊流状态流速随时间变化的测量,发现流速虽然是脉动的随机量,但却是在某一平均值上下波动变化,即具有一种规律统计学特征。为此,引进时均速度、脉动速度和瞬时速度的概念。14第14页,此课件共102页哦由于脉动的存在,空间任一点上的质点速度均随时间而变,某一时刻的速度称为瞬时速度,如图(2-15-b)中的。瞬时速度在时间内的平均值称为时均速度,
8、如图(2-15-b)中的ux。图(2-15-b)中的ux称脉动速度。图示各速度的定义及相互关系为:15第15页,此课件共102页哦16第16页,此课件共102页哦17第17页,此课件共102页哦18第18页,此课件共102页哦(3)稳定流动和非稳定流动)稳定流动和非稳定流动紊流流动中各空间点上流动参量的时均值不随时间而变化,称这种流动为稳定紊流,否则,就称为非稳定紊流。对稳定紊流,前面所讨论的有关稳定流动的规律都是适用的。19第19页,此课件共102页哦2.紊流附加应力特别注意,引入时均值的概念会带来方便,但在研究紊流流动的阻力时,就不能简单地根据时均速度应用牛顿粘性定律 ,因为紊流流动时,由
9、于脉动速度引起由于脉动速度引起的附加切应力要比由牛顿粘性定律所描述的切应力要大的附加切应力要比由牛顿粘性定律所描述的切应力要大的多。的多。20第20页,此课件共102页哦21第21页,此课件共102页哦22第22页,此课件共102页哦23第23页,此课件共102页哦24第24页,此课件共102页哦25第25页,此课件共102页哦图图4-526第26页,此课件共102页哦27第27页,此课件共102页哦28第28页,此课件共102页哦由由 (4-8)29第29页,此课件共102页哦30第30页,此课件共102页哦31第31页,此课件共102页哦三粘性流体圆管内的流动1层流流动在层流状态下,管内流
10、体质点均按主流方向平行于管轴流动。由于流体的粘性,在距管轴中心不同半径上流体的运动速度不等。靠近管壁处,因流体粘性对壁面的吸附作用,速度为零;管轴心上的速度最大。由流层间的粘滞作用,速度随半径增大而减小,在整个管截面上呈现出不同速度的平行流层,如图(2-17-a)所示。图4-6 层流流动速度分布 32第32页,此课件共102页哦根据理论解析(对层流流动)及理论与实验的综合研究(对紊流流动),对两种流动状态提出了以下的速度分布数学表达式:在层流时,管道截面上的速度呈抛物线分布。以公式表达为(4-11)式中:式中:在半径为在半径为r处的流速处的流速 ms;流体的最大流速,即管轴上的速度流体的最大流
11、速,即管轴上的速度 m/s;R管道半径管道半径 m。33第33页,此课件共102页哦34第34页,此课件共102页哦2 紊流流动在紊流流动时,对管内整个流体来说,粘性力的作用处于次要地位,紊流核心占据了管内的大部空间。但在靠近壁面处;由流体对管壁表面的粘滞作用,仍保存着一个层流流动的薄层,即层流底层。层流底层上的速度分布具有层流状态的特征,即壁面处的速度为零,并向轴心方向按层流流动的特征增加。在紊流核心区,流体除具有主流方向的分速度外,还具有横向分速度,而且呈现不稳定的脉动现象。由流体质点的横向掺混,截面上的流速分布则较均匀,如图(4-7)所示。图4-7 层流流动速度分布 35第35页,此课件
12、共102页哦36第36页,此课件共102页哦四管内流动阻力损失计算1阻力损失表达式 伯努利方程:(m)(4-17-1)(N/m2)(4-17-2)37第37页,此课件共102页哦38第38页,此课件共102页哦39第39页,此课件共102页哦40第40页,此课件共102页哦41第41页,此课件共102页哦42第42页,此课件共102页哦43第43页,此课件共102页哦44第44页,此课件共102页哦2)紊流摩阻45第45页,此课件共102页哦第五节 沿程阻力系数的确定图图4-8 尼古拉兹管流摩阻实验图尼古拉兹管流摩阻实验图 层流区层流区过渡区过渡区水力光滑管区水力光滑管区光滑光滑-粗糙过渡区粗
13、糙过渡区水力粗糙管区水力粗糙管区46第46页,此课件共102页哦47第47页,此课件共102页哦48第48页,此课件共102页哦49第49页,此课件共102页哦50第50页,此课件共102页哦51第51页,此课件共102页哦(2)莫迪图)莫迪图52第52页,此课件共102页哦层流层流层流区层流区过渡区过渡区粗糙区粗糙区过渡粗过渡粗糙区糙区光滑管光滑管莫迪图莫迪图(用于计算新的工业管道)53第53页,此课件共102页哦 输送石油的管道长l=5000m,直径d=250mm的旧无缝钢管,通过的质量流量qm=100t/h,运动黏度在冬季冬=1.0910-4m2/s,夏季夏=0.3610-4m2/s,若
14、取密度 885kg/m3,试求沿程水头损失各为多少?例例 沿程损失:已知管道和流量求沿程损失沿程损失:已知管道和流量求沿程损失54第54页,此课件共102页哦4444.42000 为紊流夏季1467.92000 为层流冬季雷诺数0.64(m/s)平均流速112.99(m3/h)体积流量【解解】首先判别流动所处的区域55第55页,此课件共102页哦冬季由于夏季石油在管道中流动状态处于紊流光滑管区,故沿程阻力系数用勃拉休斯公式计算,即夏季沿程水头损失56第56页,此课件共102页哦57第57页,此课件共102页哦58第58页,此课件共102页哦59第59页,此课件共102页哦3局部阻力损失计算局部
15、阻力损失计算管道流动的局部阻力产生于流体流过弯头、管道流动的局部阻力产生于流体流过弯头、闸阀,三通以及变管径区域。这种阻力损失闸阀,三通以及变管径区域。这种阻力损失可归结为,由流体流向和速度的变化而引起可归结为,由流体流向和速度的变化而引起的能量损失,其中包括不等速流体的内部冲的能量损失,其中包括不等速流体的内部冲击,流体与器壁的碰撞,以及在流向和速度击,流体与器壁的碰撞,以及在流向和速度(管截面管截面)变化时由附面层脱离现象产生的涡变化时由附面层脱离现象产生的涡流而构成。流而构成。对局部阻力损失,除个别情况可由理论解对局部阻力损失,除个别情况可由理论解析确定外,一般均是以实验方法确定析确定外
16、,一般均是以实验方法确定(41)式中的阻力系数式中的阻力系数K值。值。60第60页,此课件共102页哦1)管道截面突然扩大如图如图(4-10)所示,流体自小截所示,流体自小截面流入突然扩大的截面后,有面流入突然扩大的截面后,有速度不等的流体质点相互碰撞,速度不等的流体质点相互碰撞,涡流流动和流体与器壁的冲击。涡流流动和流体与器壁的冲击。图图4-10 突然扩大管道突然扩大管道 61第61页,此课件共102页哦62第62页,此课件共102页哦由连续性方程,由连续性方程,代入上式则有,代入上式则有(4-e-2)将将(4-e-2)式代入式代入(4-e-1)式,则得突然扩大阻力损失计算式:式,则得突然扩
17、大阻力损失计算式:(4-29-1)63第63页,此课件共102页哦(4-29-2)(4-30)64第64页,此课件共102页哦(2)管道截面逐渐扩大局部阻力65第65页,此课件共102页哦(3)突然收缩局部阻力图图4-12.突然收缩突然收缩 66第66页,此课件共102页哦(4)改变流向时的局部阻力系数(直角弯头)流体改变流向时与管壁有正流体改变流向时与管壁有正面冲击,回流区扰动及转向面冲击,回流区扰动及转向收缩时的耗损等。收缩时的耗损等。90转向为转向为典型情况,如图典型情况,如图(4-13)所示。所示。流向改变的局部阻力随流向改变的局部阻力随转角转角()减小而降低,亦与管壁的减小而降低,亦
18、与管壁的粗糙度和粗糙度和Re数有关。表(数有关。表(4-1)列出不同流向转角和管壁)列出不同流向转角和管壁表面状态下的阻力系数值。表面状态下的阻力系数值。也可用下式计算也可用下式计算图图4-13 改变流向改变流向(4-33)67第67页,此课件共102页哦(5)加圆弯头局部阻力系数加圆弯头局部阻力系数可用下式计算:加圆弯头局部阻力系数可用下式计算:(4-34)该式仅适用于该式仅适用于:D 2 r 5D D管道直径,管道直径,m;r 弯头曲率半径,弯头曲率半径,m。也可查表也可查表图图4-14 圆弯头圆弯头 68第68页,此课件共102页哦(6)其它流动情况的局部阻力特殊类型的局部阻力系数计算特
19、殊类型的局部阻力系数计算,书中都列出书中都列出了相应的表格了相应的表格,或经验公式或经验公式,都可以从手册中都可以从手册中查到查到.69第69页,此课件共102页哦例例.设矩形截面的砖砌烟道,设矩形截面的砖砌烟道,排除温度排除温度600的烟气量的烟气量为为35000m3/h,烟道长,烟道长L=10m,表面粗糙度,表面粗糙度=5,烟气的运动粘度,烟气的运动粘度=0.910-4/s,烟气在,烟气在标准状态下的密度标准状态下的密度0=1.29kg/m3,求摩擦,求摩擦阻力。阻力。解:解:烟气的平均流速:烟气的平均流速:烟气在烟气在600下的密度下的密度 烟道的水力学直径烟道的水力学直径70第70页,
20、此课件共102页哦71第71页,此课件共102页哦72第72页,此课件共102页哦73第73页,此课件共102页哦五.简单管流系统计算管流系统存在摩擦阻力和局部阻力,系统的管流系统存在摩擦阻力和局部阻力,系统的总阻力损失为两者之和。管流系统计算是按总阻力损失为两者之和。管流系统计算是按管路系统的联通方式,通过系统的能量平衡,管路系统的联通方式,通过系统的能量平衡,确定系统的阻力损失、流体的流速及流量等。确定系统的阻力损失、流体的流速及流量等。任何一种复杂的管路系统均由简单管路经任何一种复杂的管路系统均由简单管路经串联和并联组台而成,串联和并联管路为管串联和并联组台而成,串联和并联管路为管统系统
21、的基本组成形式。统系统的基本组成形式。74第74页,此课件共102页哦1 串联管路计算 75第75页,此课件共102页哦例例.设水自水面上压力设水自水面上压力P1=19600Pa(N/m2)的水箱的水箱A经串联管路流向敞开的容器经串联管路流向敞开的容器B,如,如图,试确定水的流量(忽略摩擦阻力损失)。图,试确定水的流量(忽略摩擦阻力损失)。76第76页,此课件共102页哦77第77页,此课件共102页哦78第78页,此课件共102页哦79第79页,此课件共102页哦2.并联管路的计算 各个支管路中流体的压力损失相等,总质各个支管路中流体的压力损失相等,总质量流量等于各个支管路内质量流量的和。量
22、流量等于各个支管路内质量流量的和。(4-38)(4-39)80第80页,此课件共102页哦81第81页,此课件共102页哦82第82页,此课件共102页哦83第83页,此课件共102页哦84第84页,此课件共102页哦六.粘性流体孔口的流出对液体自盛桶孔口流出过程,常需对液体自盛桶孔口流出过程,常需确定两种相关参数确定两种相关参数,一是桶内液面一是桶内液面高度不变时的流出速度,另一是高度不变时的流出速度,另一是桶内定量液体的流空时间。对于桶内定量液体的流空时间。对于液体自盛桶底部孔口流出的解析,液体自盛桶底部孔口流出的解析,按图按图(4-15)的条件应用不可压缩流的条件应用不可压缩流体动量平衡
23、方程体动量平衡方程(伯努利方程伯努利方程)确定确定流出各参数的计算式流出各参数的计算式 图图4-15 液体自桶底孔口流出液体自桶底孔口流出85第85页,此课件共102页哦 1液面高度不变时的流出速度86第86页,此课件共102页哦87第87页,此课件共102页哦88第88页,此课件共102页哦2 桶内定量液体的流空时间89第89页,此课件共102页哦90第90页,此课件共102页哦91第91页,此课件共102页哦3不可压缩气体自孔口及管嘴的流出气体虽为可压缩流体,但本气体虽为可压缩流体,但本节所涉及的流出问题压力变节所涉及的流出问题压力变化较小,把它作为不可压缩化较小,把它作为不可压缩流体来处
24、理。流体来处理。1)流速与流量的基本公式)流速与流量的基本公式设容器如图设容器如图(56)所示,所示,容器容器内外压力不等,内外压力不等,Pt尸:,尸:,气体从孔口流出。在不计浮气体从孔口流出。在不计浮力的作用下,气体自截面为力的作用下,气体自截面为J。的孔口流出后,由惯性作用的孔口流出后,由惯性作用流股截面收缩为流股截面收缩为Jh气体在流气体在流出阮存在局部阻力损失。出阮存在局部阻力损失。图图4-17 气体自小孔流出气体自小孔流出92第92页,此课件共102页哦93第93页,此课件共102页哦94第94页,此课件共102页哦95第95页,此课件共102页哦较精确计算时,可参照图较精确计算时,
25、可参照图(55)确定速度系数。确定速度系数。对密度较小的气体,对密度较小的气体,(59)及及(5l0)式应用于非水平流动时,式应用于非水平流动时,亦不会有较大的误差;但对密度较大的液体,则需考虑流出时的亦不会有较大的误差;但对密度较大的液体,则需考虑流出时的位能变化。位能变化。96第96页,此课件共102页哦 2)压差随高度变化时的流出计算 当容器内外气体的重度不同当容器内外气体的重度不同时,由两气体静力平衡的特时,由两气体静力平衡的特征,则存在随高度而变化的征,则存在随高度而变化的压差。此种压差如作用在容压差。此种压差如作用在容器开口部分,则会有气体通器开口部分,则会有气体通过开口流动,火焰炉炉门溢过开口流动,火焰炉炉门溢气,即为此种压差随高度变气,即为此种压差随高度变化而流出的典型情况。化而流出的典型情况。图图418 变压差孔口流出变压差孔口流出 97第97页,此课件共102页哦98第98页,此课件共102页哦99第99页,此课件共102页哦100第100页,此课件共102页哦101第101页,此课件共102页哦102第102页,此课件共102页哦
限制150内