信息论与编码理论基础第五章PPT讲稿.ppt
《信息论与编码理论基础第五章PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《信息论与编码理论基础第五章PPT讲稿.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、信息论与编码理论基础第五章2023/4/101第1页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题最简单的检错和纠错单个的字无法检错:扪?词汇能够检错:我扪的我扪的词汇能够纠错:我扪的我们的,我等的,我辈的,我班的,原因分析:“扪?”可以有几万个答案,但“我扪的?”的答案却很少。结论:课文以及词汇的概率分布的稀疏性可以用来检错和纠错。课文以及词汇的概率分布的稀疏性可以用来检错和纠错。2023/4/102第2页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题设信道是一个D元字母输入/D元字母输出的DMC信道,字母表为0,1,D-1。其信道
2、转移概率矩阵为DD矩阵如下。这是一个对称信道。信道传输错误的概率定义为P(输出不等于k|输入为k)=p,k0,1,D-1。此处p(1-p)。2023/4/103第3页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题设信源消息序列经过D元信源编码(等长编码或不等长编码)后变成了如下的随机变量序列X-2X-1X0X1X2,其中每个随机变量Xl的事件全体都是D元字母表0,1,D-1。将此随机变量序列切割成L维随机向量准备输入信道:(X1X2XL),(XL+1XL+2X2L),。如果直接将如果直接将(X1X2XL)输入信道,信道的输出为输入信道,信道的输出为(X1X2XL)
3、,则,则当信道传输错误时无法检测到(即接收方无法确知是否正确接收)。当信道传输错误时无法检测到(即接收方无法确知是否正确接收)。正确接收的概率为正确接收的概率为P(X1X2XL)=(X1X2XL)=P(X1=X1)P(X2=X2)P(XL=XL)=(1-p)L。2023/4/104第4页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题将(X1X2XL)进行变换:C(X1X2XL)=(U1U2UN),其中(U1U2UN)为N维随机向量,NL,且变换是单射(即(X1X2XL)的不同事件映射到(U1U2UN)的不同事件)。将(U1U2UN)输入信道;信道的输出为(Y1Y2
4、YN);再根据根据(Y1Y2YN)的值猜测出输入信道的值的值猜测出输入信道的值(U1U2UN),并根据变换式(U1U2UN)=C(X1X2XL)将(U1U2UN)反变换为(X1X2XL)。如果(X1X2XL)=(X1X2XL),则正确接收。2023/4/105第5页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题(1)(X1X2XL)的事件共有DL个,因此(U1U2UN)的事件共有DL个,占N维向量值的份额为DL/DN=1/DN-L。因此当信道传输错误时,有可能使输出值(Y1Y2YN)不在这1/DN-L份额之内。这就是说,信道传输错误有可能被检测到。(2)如果精心地
5、设计变换C(X1X2XL)=(U1U2UN)和猜测规则(Y1Y2YN)(U1U2UN),则正确接收的概率远远大于(1-p)L。(3)变换(X1X2XL)(U1U2UN)=C(X1X2XL)称为信道编码信道编码,又称为(N,L)码码。一个事件的变换值称为该事件的码码字字。L称为信息长,N称为码长。2023/4/106第6页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题(4)过程(Y1Y2YN)(U1U2UN)(X1X2XL)称为纠错译码纠错译码。当(X1X2XL)=(X1X2XL)时称为正确译码(实际上就是正确接收)。(5)N比L大得越多,1/DN-L份额越小,码字
6、的分布越稀疏,信道传输错误不在这1/DN-L份额之内的可能性越大,即信道传输错误越容易被检测到。但N比L大得越多,信道传输的浪费越大。(6)称R=L/N为编码速率,也称为信息率。(似乎与信源编码相互倒置?)(7)注解:“(X1X2XL)不进行编码”实际上也是一种编码,称为恒等编码。此时N=L,事件x=(x1x2xL)的码字就是x自身。2023/4/107第7页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题关于译码准则关于译码准则译码准则就是猜测规则。当信道的输出值为y时,将其译为哪个码字u最合理?最大后验概率准则最大后验概率准则简记b(u|y)=P(U1U2UN)
7、=u|(Y1Y2YN)=y)。称b(u|y)为后验概率。最大后验概率准则:2023/4/108第8页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题后验概率的计算:记q(u)=P(U1U2UN)=u),称q(u)为先验概率;pN(y|u)=P(Y1Y2YN)=y|(U1U2UN)=u),我们知道p(y|u)是信道响应特性,而且pN(y|u)=P(Y1=y1|U1=u1)P(Y2=y2|U2=u2)P(YN=yN|UN=uN)=(p/(D-1)d(1-p)N-d,其中d是(y1y2yN)与(u1u2uN)对应位置值不相同的位数;(以后将称d为Hamming距离)202
8、3/4/109第9页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题记w(y)=P(Y1Y2YN)=y)。我们知道2023/4/1010第10页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题最大似然概率准则最大似然概率准则最小距离准则(最小错误准则)最小距离准则(最小错误准则)y与u的Hamming距离定义为(y1y2yN)与(u1u2uN)对应位置值不相同的位数,记为d(y,u)。2023/4/1011第11页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题命题命题 最大似然概率准则等价于最小距离准则。证明
9、 pN(y|u)=P(Y1=y1|U1=u1)P(Y2=y2|U2=u2)P(YN=yN|UN=uN)=(p/(D-1)d(1-p)N-d,其中d是y与u的Hamming距离。注意到p/(D-1)(1-p)。所以pN(y|u)达到最大,当且仅当y与u的Hamming距离达到最小。得证。2023/4/1012第12页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题命题命题 如果每个码字是等概出现的,则最大后验概率准则等价于最大似然概率准则。证明2023/4/1013第13页,共27页,编辑于2022年,星期四5.1 离散信道编码问题离散信道编码问题对两种译码准则的评述
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息论 编码 理论基础 第五 PPT 讲稿
限制150内