第3讲电力电子器件精选文档.ppt
《第3讲电力电子器件精选文档.ppt》由会员分享,可在线阅读,更多相关《第3讲电力电子器件精选文档.ppt(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3讲电力电子器件本讲稿第一页,共五十一页第第1章章 电力电子器件电力电子器件本次课主要学习内容:本次课主要学习内容:晶闸管的主要参数。主要参数。(P10P10P14P14)晶闸管派生器件的工作原理工作原理、基本特性基本特性、主要参数主要参数以及选择和使用中应注意问题。(P15P15P17P17)全控型器件的相关知识。(P18P18P29P29)1-2本讲稿第二页,共五十一页1-31.2.3晶闸管的主要参数晶闸管的主要参数断态重复峰值电压断态重复峰值电压UDRM在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。反向重复峰值电压反向重复峰值电压URRM在门极断路而结温为额定值时,允许
2、重复加在器件上的反向峰值电压。通态(峰值)电压通态(峰值)电压UT晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额额定定电电压压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压23倍。使用注意:使用注意:1)电压定额电压定额本讲稿第三页,共五十一页1-41.2.3晶闸管的主要参数晶闸管的主要参数通态平均电流通态平均电流 IT(AV)在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值最大工频正弦半波电流的平均值。标称其额定电流的参数。使用时应按有效值相等的原则有效值相等
3、的原则来选取晶闸管。维持电流维持电流 IH使晶闸管维持导通所必需的最小电流。擎住电流擎住电流 IL晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。对同一晶闸管来说对同一晶闸管来说,通常通常IL约为约为IH的的24倍倍。浪涌电流浪涌电流ITSM指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流。2 2)电流定额电流定额本讲稿第四页,共五十一页1-51.2.3晶闸管的主要参数晶闸管的主要参数 除开通时间tgt和关断时间tq外,还有:断态电压临界上升率断态电压临界上升率du/dt 指在额定结温和门极开路的情况下,不导致晶闸管从断态到通 态转换的外加电压最大上升率
4、。电压上升率过大,使充电电流足够大,就会使晶闸管误导通。通态电流临界上升率通态电流临界上升率di/dt 指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。如果电流上升太快,可能造成局部过热而使晶闸管损坏。3 3)动态参数动态参数本讲稿第五页,共五十一页1-61.2.4晶闸管的派生器件晶闸管的派生器件有快速晶闸管和高频晶闸管。开关时间以及du/dt和di/dt耐量都有明显改善。普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10s左右。高频晶闸管的不足在于其电压和电流定额都不易做高。由于工作频率较高,不能忽略其开关损耗的发热效应。DATASHEET1 1)快速晶闸管快速晶闸
5、管(FastSwitchingThyristorFST)本讲稿第六页,共五十一页1-71.2.4晶闸管的派生器件晶闸管的派生器件2 2)双双 向向 晶晶 闸闸 管管(Triode AC SwitchTRIAC或或Bidirectionaltriodethyristor)图1-10 双向晶闸管的电气图形符号和伏安特性a)电气图形符号b)伏安特性a)b)IOUIG=0GT1T2可认为是一对反并联联接的普通晶闸管的集成。有两个主电极T1和T2,一个门极G。在第和第III象限有对称的伏安特性。不用平均值而用有效值来表示不用平均值而用有效值来表示其额定电流值其额定电流值。DATASHEET本讲稿第七页,
6、共五十一页1-81.2.4晶闸管的派生器件晶闸管的派生器件3)逆逆 导导 晶晶 闸闸 管管(Reverse ConductingThyristorRCT)a)KGAb)UOIIG=0图1-11逆导晶闸管的电气图形符号和伏安特性a)电气图形符号b)伏安特性将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。具有正向压降小、关断时间短、高温特性好、额定结温高等优点。本讲稿第八页,共五十一页1-91.2.4晶闸管的派生器件晶闸管的派生器件4)光光控控晶晶闸闸管管(Light Triggered ThyristorLTT)AGKa)AK光强度强弱b)OUIA图1-12光控晶闸管的电气图形符号和伏安
7、特性a)电气图形符号b)伏安特性又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。光触发保证了主电路与控制电路之间的绝缘,且可避免电磁干扰的影响。因此目前在高压大功率的场合。本讲稿第九页,共五十一页1-101.3典型全控型器件典型全控型器件门极可关断晶闸管在晶闸管问世后不久出现。20世纪80年代以来,电力电子技术进入了一个崭新时代。典型代表门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管。本讲稿第十页,共五十一页1-111.3典型全控型器件典型全控型器件常用的常用的典型全控型器件典型全控型器件电力MOSFETIGBT单管及模块本讲稿第十一页,共五十一页1-121.3.
8、1门极可关断晶闸管门极可关断晶闸管晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。门门极极可可关关断断晶晶闸闸管管(Gate-Turn-Off Thyristor GTO)本讲稿第十二页,共五十一页1-131.3.1门极可关断晶闸管门极可关断晶闸管结构结构:与普通晶闸管的相相同同点点:PNPN四层半导体结构,外部引出阳极、阴极和门极。和普通晶闸管的不同点不同点:GTO是一种多元的功率集成器件。图1-13GTO的内部结构和电气图形符号a)各单元的阴极、门极间隔排列的图形b)并联单元结构断面示意
9、图c)电气图形符号1)GTO的结构和工作原理的结构和工作原理本讲稿第十三页,共五十一页1-141.3.1门极可关断晶闸管门极可关断晶闸管工作原理工作原理:与普通晶闸管一样,可以用图1-7所示的双晶体管模型来分析。图1-7 晶闸管的双晶体管模型及其工作原理 1 1+2 2=1=1是器件临界导通的条件。是器件临界导通的条件。由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益 1 1和 2 2。本讲稿第十四页,共五十一页1-151.3.1门极可关断晶闸管门极可关断晶闸管GTO能够通过门极关断的原因是其与普通晶闸管有如下区区别别:设计2较大,使晶体管V2控制灵敏,易于GTO关
10、断。导通时1+2更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。图1-7晶闸管的工作原理本讲稿第十五页,共五十一页1-161.3.1门极可关断晶闸管门极可关断晶闸管GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。GTO关断过程中有强烈正反馈,使器件退出饱和而关断。多元集成结构还使GTO比普通晶闸管开通过程快,承受di/dt能力强。由上述分析我们可以得到以下结论结论:本讲稿第十六页,共五十一页1-171.3.1门极可关断晶闸管门极可关断晶闸管开开通通过过程程:与普通晶闸管相同关关断断过过程程:与普通晶闸管有
11、所不同储储存存时时间间ts,使等效晶体管退出饱和。下降时间下降时间tf尾尾部部时时间间tt残存载流子复合。通常tf比ts小得多,而tt比ts要长。门极负脉冲电流幅值越大,ts越短。Ot0tiGiAIA90%IA10%IAtttftstdtrt0t1t2t3t4t5t6图1-14GTO的开通和关断过程电流波形2)GTO的动态特性的动态特性本讲稿第十七页,共五十一页1-181.3.1门极可关断晶闸管门极可关断晶闸管3)GTO的主要参数的主要参数延迟时间与上升时间之和。延迟时间一般约12s,上升时间则随通态阳极电流的增大而增大。一般指储存时间和下降时间之和,不包括尾部时间。下降时间一般小于2s。(2
12、)关断时间关断时间toff(1)开通时间开通时间ton不少GTO都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联。许多参数和普通晶闸管相应的参数意义相同,以下只介绍意义不同的参数。本讲稿第十八页,共五十一页1-191.3.1门极可关断晶闸管门极可关断晶闸管(3)最大可关断阳极电流最大可关断阳极电流IATO(4)电流关断增益电流关断增益 off off一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断时门极负脉冲电流峰值要200A。GTO额定电流。最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。(1-8)本讲稿第十九页,共五十一页1-20
13、1.3.2电力晶体管电力晶体管电力晶体管(GiantTransistorGTR,直译为巨型晶体管)。耐高电压、大电流的双极结型晶体管(BipolarJunctionTransistorBJT),英文有时候也称为PowerBJT。DATASHEET12应用应用20世纪80年代以来,在中、小功率范围内取代晶闸管,但目前又大多被IGBT和电力MOSFET取代。术语用法术语用法:本讲稿第二十页,共五十一页1-21与普通的双极结型晶体管基本原理是一样的。主要特性是耐压高、电流大、开关特性好。通常采用至少由两个晶体管按达林顿接法组成的单元结构。采用集成电路工艺将许多这种单元并联而成。1.3.2电力晶体管电
14、力晶体管1)GTR的结构和工作原理的结构和工作原理图1-15GTR的结构、电气图形符号和内部载流子的流动a)内部结构断面示意图b)电气图形符号c)内部载流子的流动本讲稿第二十一页,共五十一页1-221.3.3电力场效应晶体管电力场效应晶体管分为结型结型和绝缘栅型绝缘栅型通常主要指绝绝缘缘栅栅型型中的MOSMOS型型(Metal Oxide SemiconductorFET)简称电力MOSFET(PowerMOSFET)结型电力场效应晶体管一般称作静电感应晶体管(StaticInductionTransistorSIT)特点特点用栅极电压来控制漏极电流驱动电路简单,需要的驱动功率小。开关速度快,
15、工作频率高。热稳定性优于GTR。电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。电力场效应晶体管电力场效应晶体管本讲稿第二十二页,共五十一页1-231.3.3电力场效应晶体管电力场效应晶体管电力电力MOSFET的种类的种类按导电沟道可分为P沟道沟道和N沟道沟道。耗耗尽尽型型当栅极电压为零时漏源极之间就存在导电沟道。增增强强型型对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道。电力MOSFET主要是N沟道增强型沟道增强型。DATASHEET1)电力)电力MOSFET的结构和工作原理的结构和工作原理本讲稿第二十三页,共五十一页1-241.3.3电力场效应晶体管电力场效
16、应晶体管电力电力MOSFET的结构的结构是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别。采用多元集成结构,不同的生产厂家采用了不同设计。图1-19电力MOSFET的结构和电气图形符号本讲稿第二十四页,共五十一页1-251.3.3电力场效应晶体管电力场效应晶体管小功率MOS管是横向导电器件。电 力MOSFET大 都 采 用 垂 直 导 电 结 构,又 称 为VMOSFET(VerticalMOSFET)。按垂直导电结构的差异,分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(VerticalDouble-diffusedMOSFET)
17、。这里主要以VDMOS器件为例进行讨论。电力电力MOSFET的结构的结构本讲稿第二十五页,共五十一页1-261.3.3电力场效应晶体管电力场效应晶体管截止截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。导电导电:在栅源极间加正电压UGS当UGS大于UT时,P型半导体反型成N型而成为反反型型层层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。图1-19电力MOSFET的结构和电气图形符号电力电力MOSFET的工作原理的工作原理本讲稿第二十六页,共五十一页1-271.3.3电力场效应晶体管电力场效应晶体管(1)静态特性静态特性漏极电
18、流ID和栅源间电压UGS的关系称为MOSFET的转移特转移特性性。ID较大时,ID与与UGS的关系近似线性,曲线的斜率定义为跨导跨导Gfs。010203050402468a)10203050400b)1020 305040饱和区非饱和区截止区ID/AUTUGS/VUDS/VUGS=UT=3VUGS=4VUGS=5VUGS=6VUGS=7VUGS=8VID/A图1-20电力MOSFET的转移特性和输出特性a)转移特性b)输出特性2)电力)电力MOSFET的基本特性的基本特性本讲稿第二十七页,共五十一页1-281.3.3电力场效应晶体管电力场效应晶体管截止区截止区(对应于GTR的截止区)饱和区饱和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电力 电子器件 精选 文档
限制150内