机械设计摩擦多媒体精选文档.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《机械设计摩擦多媒体精选文档.ppt》由会员分享,可在线阅读,更多相关《机械设计摩擦多媒体精选文档.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、机械设计摩擦多媒体本讲稿第一页,共二十三页二、摩擦的种类二、摩擦的种类干摩擦NVN边界摩擦VN液体摩擦V没有润滑剂很薄油膜被厚的油膜完全隔开本讲稿第二页,共二十三页 两个无润滑物体之间的摩擦,主要是由两种因素所构成:一是摩擦面的实际接触区内出现的粘着;二是较硬表面上的微凸体在较软表面上所起的犁刨作用。那么,怎么样来区别边界摩擦、混合摩擦和液体摩擦的界限呢?可用膜厚比来划分:式中:hmin两粗糙面间的最小公称油膜厚度,m;Ra两表面的综合粗糙度;m;Ra1、Ra2分别为两表面的轮廓算术平均偏差,m;当 35后则为液体摩擦。本讲稿第三页,共二十三页三、牛顿流体定律三、牛顿流体定律yx0V=0ABV
2、hN0S(面积)如图所示,在两个平行的平板间充满具有一定粘度的润滑油,若平板A以速度V移动,另一平板B静止不动,则由于油分子与平板表面的吸附作用,将使贴近板A的油层以同样的速度V随板移动;而贴近板B的油层则静止不动。由于层与层之间速度不同,于是形成各油层间的相对滑移,在各层的界面上就存在有相应的剪应力。本讲稿第四页,共二十三页 牛顿在1687年提出一个粘性液的摩擦定律(简称粘性定律),即在流体中任意点处的剪应力均与其剪切率(或速度梯度)成正比。若用数学形式表示这一定律,即为:式中:流体单位面积上的剪切阻力,即剪应力;dv/dy流体沿垂直于运动方向(即沿图3-6中y轴方向或流体膜厚度方向)的速度
3、梯度,式中的“”号表示v随y的增大而减小;比例常数,即流体的动力粘度。摩擦学中把凡是服从这个粘性定律的液体都叫牛顿液体。本讲稿第五页,共二十三页四、液体动压润滑的条件(楔形承载机理)四、液体动压润滑的条件(楔形承载机理)(1)两个运动的表面要有楔形间隙;(2)被油膜分开的两表面有一定相对滑动速度,且大口向小口;(3)润滑油必须有一定的粘度。Pmax油压P分布曲线a b cVxy各 油 层的 速 度分布压力油膜h0p/x0 p/x=0 p/xh0 h=h0 hh0)段,p/x0,即压力沿x方向逐渐增大;而在bc(hh0)段,即p/x0,这表明压力沿x方向逐渐降低。在a和c之间必有一处(b点)的油
4、流速度变化规律不变,即p/x=0,因而压力p达到最大值。由于油膜沿着x方向各处的油压都大于入口和出口的油压,且压力形成如图3-9b上部曲线所示的分布,因而能承受一定的外载荷。b)被油膜分开的两表面必须有一定的相对滑动速度;由式(3-10)可知,若将速度V降低,则p/x亦将降低,此时油膜各点的压力强度也会随之降低。如V降低过多,油膜将无法支持外载荷,而使两表面直接接触,致使油膜破裂,液体摩擦也就消失。c)润滑油必须有一定的粘性。本讲稿第九页,共二十三页五五 润滑装置设计润滑装置设计 p2991、常用润滑方式和装置油杯油杯本讲稿第十页,共二十三页2、典型零件的润滑滑动轴承、滚动轴承脂润滑:可承受较
5、大载荷,脂润滑:可承受较大载荷,便于密封及维护,便于密封及维护,不宜填充过多不宜填充过多 dn(1.52)105 mm r/min 本讲稿第十一页,共二十三页v搅油损失?:浸油:喷油搅起油池底部杂质加速磨损3、齿轮润滑本讲稿第十二页,共二十三页1.浸油深度不能太高,一般一个齿高r/3,否则搅油损失大。2.油面距箱体底面距离:3050mm本讲稿第十三页,共二十三页润滑方法:蜗杆下置浸油润滑:蜗杆上置浸油(搅油阻力大):压力喷油润滑,油嘴对着蜗杆啮入端蜗杆布置蜗杆布置蜗杆下置:浸入油中深度至少一个牙高,但油面不应超过轴承最低滚动体的中心。蜗杆上置:浸入油池的蜗轮深度为(1/61/3)r2蜗杆下置式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械设计 摩擦 多媒体 精选 文档
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内