13空间几何体的表面积和体积(教育精品).ppt
《13空间几何体的表面积和体积(教育精品).ppt》由会员分享,可在线阅读,更多相关《13空间几何体的表面积和体积(教育精品).ppt(58页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3 1.3 简单几何体的简单几何体的表面积和体积表面积和体积灵感不灵感不过过是是“顽顽强强的的劳动劳动而而获获得的得的奖赏奖赏”主备人:王朝远主备人:王朝远 徐洪燕徐洪燕 耿玲耿玲 1 1、表面积:几何体表面的面积、表面积:几何体表面的面积 2 2、体积:几何体所占空间的大小。、体积:几何体所占空间的大小。*云在漫步云在漫步*云在漫步云在漫步表面积、全面积和侧面积表面积表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)全面积全面积:全面积是立体几何里的概念,相对于截面积(“截面积”即切面的面积)来说的,就是表面积总和侧面积侧面积:指立体图形的各个侧面的面积之和(除去
2、底面)*云在漫步云在漫步*云在漫步云在漫步棱柱、棱锥、棱台的侧面积侧面积所指的对象分别如下:棱柱-直直棱柱。棱锥-正正棱锥。棱台-正正棱台2.2.几何体的表面积几何体的表面积 (1 1)棱柱、棱锥、棱台的表面积就是)棱柱、棱锥、棱台的表面积就是 .(2 2)圆柱、圆锥、圆台的侧面展开图分别)圆柱、圆锥、圆台的侧面展开图分别是是 、;它们的表面积等于;它们的表面积等于 .各面面积各面面积 之和之和矩矩形形扇形扇形扇环形扇环形侧面积侧面积与底面面积之和与底面面积之和回忆复习有关概念回忆复习有关概念1、直棱柱:、直棱柱:2、正棱柱:、正棱柱:3、正棱锥:、正棱锥:4、正棱台:、正棱台:侧棱和底面侧棱
3、和底面垂直垂直的棱柱叫直棱柱的棱柱叫直棱柱底面是正多边形的底面是正多边形的直直棱柱叫正棱柱棱柱叫正棱柱底面是正多边形,底面是正多边形,顶点在底面的射影是顶点在底面的射影是底面中心底面中心的棱锥的棱锥正棱锥正棱锥被平行于底面的平面所截,被平行于底面的平面所截,截面和底面之间的部分叫正棱台截面和底面之间的部分叫正棱台作直三棱柱、正三棱锥、正三棱台各一个,找出作直三棱柱、正三棱锥、正三棱台各一个,找出斜高斜高COBAPD斜高的概念2、分别作出一个圆柱、圆锥、圆台,并找出旋转轴、分别作出一个圆柱、圆锥、圆台,并找出旋转轴分别经过旋转轴作一个平面,观察得到的轴截面是分别经过旋转轴作一个平面,观察得到的轴
4、截面是 什么形状的图形什么形状的图形.ABCDABCABCD矩矩 形形等腰三角形等腰三角形等腰梯形等腰梯形直棱柱:设棱柱的高为直棱柱:设棱柱的高为h,底面多边形的周长为,底面多边形的周长为c,则则S直棱柱侧直棱柱侧 .(类比矩形的面积)(类比矩形的面积)圆柱:如果圆柱的底面半径为圆柱:如果圆柱的底面半径为r,母线长为,母线长为l,那么,那么S圆柱侧圆柱侧 .(类比矩形的面积)(类比矩形的面积)ch2rl知识点一:柱、锥、台、球的表面积与侧面积知识点一:柱、锥、台、球的表面积与侧面积(1)柱体的侧面积把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?棱柱的侧面展开图是什么?如何计算它的表
5、面积?棱柱的侧面展开图是什么?如何计算它的表面积?h正棱柱的侧面展开图正棱柱的侧面展开图思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?宽宽长方形长方形圆柱的侧面展开图是矩形圆柱的侧面展开图是矩形O正棱锥:设正棱锥底面正多边形的周长正棱锥:设正棱锥底面正多边形的周长为为c,斜高为,斜高为h,则,则S正棱锥侧正棱锥侧 .(类比三角形的面积)(类比三角形的面积)圆锥:如果圆锥的底面半径为圆锥:如果圆锥的底面半径为r,母线长,母线长为为l,那么,那么S
6、圆锥侧圆锥侧 .(类比三角形的面积)(类比三角形的面积)rl(2)锥体的侧面积锥体的侧面积把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?棱锥的侧面展开图是什么?如何计算它的表面积?棱锥的侧面展开图是什么?如何计算它的表面积?正三棱锥的侧面展开图正三棱锥的侧面展开图侧面展开正五棱锥的侧面展开图正五棱锥的侧面展开图思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?扇形扇形圆锥的侧面展开图是扇形圆锥的侧面展开图是扇形O 正棱台:设正正棱台:设
7、正n棱台的上底面、下底面棱台的上底面、下底面周长分别为周长分别为c、c,斜高为,斜高为h,则正,则正n棱台棱台的侧面积公式:的侧面积公式:S正棱台侧正棱台侧 .圆台:如果圆台的上、下底面半径分圆台:如果圆台的上、下底面半径分别为别为r、r,母线长为,母线长为l,则,则S圆台侧圆台侧 l(rr)(3)台体的侧面积台体的侧面积注注:表面积侧面积底面积:表面积侧面积底面积把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积)(类比梯形的面积)侧面展开hh正四棱台的侧面展开图正四棱台的侧面展开图棱台的侧面展开图是什么?如何计算它的表面积?棱台的侧面展开图是什么?如何计算它的表面积
8、?参照圆柱和圆锥的侧面展开图,试想象圆台的参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么侧面展开图是什么 OO圆台的侧面展开图是圆台的侧面展开图是扇环扇环思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?扇环扇环扇环扇环OO侧侧OO圆柱、圆锥、圆台三者的表面积公式圆柱、圆锥、圆台三者的表面积公式之间有什么关系?之间有什么关系?Orr上底扩大上底扩大Or0上底缩小上底缩小棱柱棱柱、棱锥、棱台都是由多个平面图形围成的几何体,、棱锥、棱台都是由
9、多个平面图形围成的几何体,h它们的侧面展开图还是它们的侧面展开图还是平面图形平面图形,计算它们的计算它们的表面积就是计算它的各个侧面面积和底面面积表面积就是计算它的各个侧面面积和底面面积之和之和 例例1 已知棱长为已知棱长为a,各面均为等边三角形的,各面均为等边三角形的四面体四面体S-ABC,求它的表面积,求它的表面积 DBCAS 分析:四面体的展开图是由四个全等的正三角形分析:四面体的展开图是由四个全等的正三角形组成组成因为因为BC=a,所以:所以:因此,四面体因此,四面体S-ABC 的表面积的表面积交交BC于点于点D解:先求解:先求 的面积,过点的面积,过点S作作 ,例2:一个正三棱台的上
10、、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形O1ODABCC1A1B1D1E例3:圆台的上、下底面半径分别为2和4,高为 ,求其侧面展开图扇环所对的圆心角.分析:抓住相似三角形中的相似比是解题的关键小结:1、抓住侧面展开图的形状,用好相应的计算公式,注意逆向用公式;2、圆台问题恢复成圆锥图形在圆锥中解决圆台问题,注意相似比.答:1800练习1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为 _;答:60练习2:正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积练习3:圆台的上、下底
11、半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是1800,那么圆台的侧面积是多少?(结果中保留)小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式C=0C=CS圆柱侧=2rlS圆锥侧=rlS圆台侧=(r1+r2)lr1=0r1=r2思考:怎样求斜棱柱的侧面积?1)侧面展开图是平行四边形 2)S斜棱柱侧=直截面周长侧棱长 3)S侧侧=所有侧面面积之和所有侧面面积之和几何体占有空间部分的大小叫几何体占有空间部分的大小叫做它的体积做它的体积一、体积的概念与公理一、体积的概念与公理:公理公理1、长方体的体积等于它的长、宽、高的积。、长方体的体积等于它的长、宽、高的积。V
12、长方体长方体=abc推论推论1、长方体的体积等于它的底面积、长方体的体积等于它的底面积s和高和高h的积。的积。V长方体长方体=sh推论推论2、正方体的体积等于它的棱长、正方体的体积等于它的棱长a 的立方。的立方。V正方体正方体=a3公理公理2 2、夹在两个平行平面间的两个几何体,被平行、夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。面的面积总相等,那么这两个几何体的体积相等。PQ祖暅原理祖暅原理定理定理1:柱体(棱柱、圆柱)的体积等于它柱体(棱柱、圆柱)的体积等于它的底面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13 空间 几何体 表面积 体积 教育 精品
限制150内